
Combinatorial Test Generation For Software Product

Lines Using Minimum Invalid Tuples
Linbin Yu, Feng Duan, Yu Lei

Department of Computer Science and Engineering

University of Texas at Arlington

Arlington, TX 76019, USA

{linbin.yu, feng.duan}@mavs.uta.edu, ylei@cse.uta.edu

Raghu N. Kacker, D. Richard Kuhn

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

{raghu.kacker, kuhn}@nist.gov

Abstract—A software product line is a set of software

systems that share some common features. Several recent

works have been reported that apply combinatorial testing, a

very effective testing strategy, to software product lines. A

unique challenge in these efforts is dealing with a potentially

large number of constraints among different features. In this

paper, we propose a novel constraint-handling strategy that

uses minimum invalid tuples (MITs) as an alternative to

traditional constraint solvers. Our approach systematically

derives all MITs from a software product line, and uses them

to quickly determine the validity of a test configuration during

test generation. We implemented a test generation research

tool called LOOKUP that integrates the proposed constraint-

handling strategy with a general test generation algorithm

called IPOG-C. Experimental results show that LOOKUP

performs considerably better than two existing test generation

tools in terms of test size and execution time.

Keywords—Feature Model; Combinatorial Testing;

Constraint Handling

I. INTRODUCTION

As an emerging software development paradigm,
software product lines [1] have been adopted by many
companies. A software product line is a set of software
systems that share a set of common features. Different
configurations of a software product line are typically
represented by a feature model [2], in which a compact tree
structure is used to capture the relationships among different
features. Such relationship must hold in order to create a
valid product configuration. There are four types of
relationships, i.e., mandatory, optional, or, and alternative.
Furthermore, a feature model may include cross-tree
constraints that are explicitly specified by the user.

Fig. 1 shows an example feature model with 13 features
drawn by a tool named FeatureIDE [3]. In Fig. 1, each node
represents a feature which can be configured as either
included (true) or excluded (false). Restrictions or
constraints on which features can be combined with each
other are denoted using different notations in the tree. The
root feature Aircraft is always included. The root contains
three sub-features, in which Wing and Materials are
mandatory. It means that these features must be included.
Feature Engine is optional, which means it can be either
included or excluded. Detailed notations of the feature
model will be explained later.

Fig. 1. An example feature model

Since the number of all configurations increases
exponentially with the number of features, it is often
impractical to test all possible configurations exhaustively.
Several recent works have been reported that apply
combinatorial testing to software product lines.
Combinatorial testing has been shown to be a very effective
strategy for general software testing [4] [5] [6]. Given a
system with n parameters, t-way combinatorial testing or
simply t-way testing, where t is referred to as test strength,
requires that all t-way combinations that consist of t
parameter values be covered by at least one test. A widely
cited NIST study suggests that software faults in practical
applications are typically caused by interactions between
only a few parameters, usually no more than 6 [7].

Consider the feature model in Fig. 1. Assume t is 2. We
need to cover all possible configurations for all 2-way
feature groups such as {Aircraft, Wing}, {Aircraft, Engine}
and {Engine, Materials}. The number of 2-way feature
groups is

 . Each 2-way group has 4 configurations.
So the total number of different 2-way configurations is
78*4 = 312. However, some configurations may not be
allowed by the feature model constraints. Those
configurations are invalid and should not be covered. A test
set shown in the following Fig. 2 covers all valid 2-way
configurations of the feature model shown in Fig. 1.

Fig. 2. An example 2-way test set

Assuming that test parameters are modeled properly,
faults involving at most t parameters are guaranteed to be

exposed by t-way testing. Pairwise testing is a special case
of t-way testing where t is 2. Exhaustive testing is also a
special case of t-way testing where t equals the number of
parameters. To apply t-way testing on a feature model, one
common approach is to model each feature as a Boolean
parameter, where true (or false) indicates that a feature is
included (or excluded) in a test configuration. Moreover, a
feature model imposes restrictions on which features can be
combined with each other. These restrictions need to be
modeled as constraints, which are usually handled by
constraint solvers like SAT solvers during test generation.

Compared to general software systems, software product
lines have two unique characteristics. First, test parameters
derived from a feature model are Boolean parameters.
Second, a large number of constraints are often derived
from a feature model. Constraint handling can be a
compute-intensive process especially when there are a large
number of constraints. These two unique characteristics can
be exploited to optimize the performance of the test
generation process.

In this paper, we present an approach that uses the
notion of minimum invalid tuples (MITs) to handle
constraints. One important task of constraint handling is
validity checking, i.e., to check whether a test configuration
violates any constraint. We first formally define the notion
of MIT and report an efficient algorithm that systematically
derives all possible MITs from a feature model. These MITs
represent the same constraint space as the feature model tree
notation, and can be used to quickly determine the validity
of a test configuration, i.e., a test is valid if and only if it
contains no MIT. This approach is different from traditional
constraint-solving approaches such as the ICPL algorithm
[8]. In traditional constraint-solving approaches, numerous
solving processes could be performed during test generation,
but they are almost independent with each other and very
little information can be shared among different constraint
solvings. In contrast, the process of MIT generation works
as a preprocess step before test generation. Once all MITs
are found, validity checking can be performed in a very
efficient way, i.e., checking if a test contains any known
MIT. The performance of MIT generation highly depends
on the complexity of a feature model. If the model contains
a large number of MITs, the constraint solving approach
may perform better.

We built a test generation tool called LOOKUP [9] that
integrates our constraint-handling approach with a general t-
way test generation algorithm called IPOG [10]. LOOKUP
can be downloaded at [9]. In order to evaluate the proposed
constraint-handling strategy and the LOOKUP tool, we use
12 largest feature models from the SPLOT feature model
repository [11] as subject systems. The number of features
in these 12 models ranges from 71 to 290. We compared our
tool with two existing tools, including a general
combinatorial test generation tool called PICT [12], and a
feature model-specific test generation tool called SPLCA
[13]. Experimental results show that our tool performed
considerably better than SPLCA and PICT in terms of test
set size and execution time.

The rest of this paper is organized as follows. Section II
gives some background knowledge about feature models
and constrained combinatorial test generation. Section III
introduces the notion of MIT. Section IV presents the
complete test generation algorithm for feature models.
Section V reports experimental results. Section VI discusses
related work. Section VII concludes this paper and discusses
future work.

II. PRELIMINARIES

In this section, we give some formal definitions that are
used by our approach.

Definition 1 (Feature) A feature p is a Boolean variable
where true (or false) indicates this feature is included in (or
excluded from) a test configuration.

For ease of notation, we use p to denote that the value of
feature p is true, and !p to denote that the value of feature p
is false, when there is no ambiguity. In the rest of this paper,
we assume that a feature model contains a set P of n
features, i.e., P = {p1, p2, …, pn}.

Definition 2 (Test Configuration) A test configuration
is a function that assigns a Boolean value to each feature.

Formally, a test configuration is a function f: P {true,
false}.

A test configuration represents a specific version in a
software product line.

Definition 3 (Tuple) A tuple u is a test configuration f
restricted to a subset of features. Formally, u = f | M, where
M ⊆ P.

A tuple is a set of feature configurations. We will use
dom(u) to represent the domain of u, which is the set of
features involved in u. We define the size of a tuple as the
number of features in dom(u). A tuple of size t is also
denoted as a t-tuple. A tuple u can also be considered as a
set of values {u(pi) | pi ∈ dom(u)}. For example, assume a
feature model contains 3 features {a, b, c}. A 2-tuple {a, !b}
represents a partial configuration in which feature a is
selected, and b is not selected. We will use this notation in
the rest of this paper.

Note that a tuple contains at most one value for the same
feature, since otherwise the feature configuration is not
meaningful. For example, {a, b, !a} is not a meaningful
configuration since it contains contradicting values a and !a.

Definition 4 (Containment) A tuple u is said to be

contained (or covered) by another tuple u’, denoted as u

u’, if and only if dom(u) ⊆ dom(u’) and p ∈ dom(u), u(p)
= u(p’).

Definition 5 (Constraint) A constraint c is a function: F

 {true, false} that maps a test configuration to true or
false.

A constraint is in essence a restriction that must be
satisfied when different features are combined to create a
product configuration. A constraint may be explicitly

defined using logic expressions, or may be implicitly
encoded by the feature model tree structure. A valid
software product (test configuration) must satisfy all
constraints.

Definition 6 (Feature Model) A feature model M = <P,
C> consists of a set of features P = {P1, P2, …, Pn}, and a
set of constraints C = {c1, c2 r} .

Constraint can be represented in different ways. One
may use logic expressions to specify constraints, or use a list
of unwanted combinations explicitly.

Definition 7 (Configuration Validity) A test
configuration f of a feature model M is valid if and only if f

satisfies all the constraints of M, i.e., c ∈ C, c(f) = true.

Definition 8 (Tuple Validity) A tuple u is valid if it can
be contained by a valid test f. Otherwise u is invalid.

A tuple is valid implies that it can be extended to a valid
test. Otherwise, it is an invalid tuple.

Definition 9 (T-way Test Set). Let M = <P, C> be a
feature model. Let Σ be the set of all valid t-tuples. A t-way

test set is a set Ω of tests such that, ∈ Σ, ∈ Ω such

that is valid and ⊆ .

Intuitively, a t-way test set is a set of valid test
configurations such that each valid t-tuple is covered by at
least one valid test.

III. MINIMUM INVALID TUPLES

In this section, we introduce the notion of minimum
invalid tuples (MITs) that can be used for validity checking.
We first discuss how to represent constraints in a feature
model using a set of invalid tuples. Then we formally define
MIT and explain how MIT can be used for validity checking.
Last, we present an algorithm that can effectively generate
all MITs from a feature model.

A. Invalid Tuples in Feature Model

As mentioned earlier, constraints can be represented by
unwanted combinations, i.e., invalid tuples. An invalid tuple
is a tuple that is not allowed to appear in a test
configuration. Thus an invalid tuple is equivalent to a

conjunctive normal form (CNF) constraint. For example, an
invalid tuple {a, !b} means a product cannot include feature
a when feature b is excluded. This is equivalent to a logic

expression “(a ∧b)” or “a b”, i.e., either feature a is

excluded or feature b is included. Similarly, an invalid tuple

{a, !b, c, d} is equivalent to “a b c d”.
Constraints encoded in feature model can be easily
converted to invalid tuples. Fig. 3 summarizes all 6 types of
relations in a feature model and the equivalent invalid tuples.
A special case is that, the root feature is always true in
order to make a test configuration meaningful.

 Optional relation: A parent feature p must be true if any
child feature c is true.

 Mandatory relation: A child feature c must has the
same value as its parent.

 Or relation: A parent feature p must be true if any child
feature ci is true; at least one child feature is true if the
parent feature p is true.

 Alternative relation: A parent feature p must be true if
any child feature ci is true; at most one child feature can
be true.

 Require: The selection of feature a requires the selection
of feature b.

 Exclude: Features a and b cannot be both true.

Given a feature model, we can find a set of invalid
tuples, denoted as input invalid tuples, using these rules.

B. Minimum Invalid Tuples

We define the notion of a minimum invalid tuple (MIT).

Definition 10 (Minimum Invalid Tuple) A minimum
invalid tuple (MIT) is an invalid tuple that can not contain
any other invalid tuple.

Intuitively, a MIT is an invalid tuple of minimum size.
That is, an MIT will become valid if any element is
removed from this tuple. This also means that, given any

invalid tuple u, we can generate a MIT u’ u. Note that an
invalid tuple may contain more than one MIT.

Type Optional Mandatory Or Alternative Require Exclude

Notation

Semantics c p
p c

c p

ci p

p (c1 c2 … cn)

ci p

(ci cj)
a b (a b)

Invalid Tuples {!p, c}
{p, !c}

{!p, c}

{!p, ci}

{p, !c1, !c2, …!cn}

{!p, ci}

{ci, cj}
{!b, a} {a, b}

Fig. 3. Invalid Tuples in Feature Model

From Definition 10, we have an important observation:
A tuple is valid if and only if it contains no MIT. If a
tuple u contains no MIT, then it also contains no invalid
tuples. Otherwise we can generate at least one MIT from an
invalid tuple, which contradicts our assumption. This
observation suggests a new approach of validity check, that
is, checking if a tuple contains any MIT. The main
challenge of this approach is to generate all possible MITs
from a feature model, which will be discussed in the next
section.

C. The MIT Generation Algorithm

Generating all MITs is an important step. In this section
we propose an effective algorithm that can generate all the
MITs from a feature model. As discussed in Section III.A,
constraints in a feature model can be represented using a set
of invalid tuples, which we refer to as the set of given
invalid tuples. Obviously, a tuple that contains any given
invalid tuple must be invalid. However if a tuple contains no
given invalid tuple, it may still not be valid. For example,
assuming we have 2 input invalid tuple {a, b} and {!b, c}. A
tuple {a, c} is invalid even it does not contain {a, b} or {!b,
c}. This is because tuple {a, c} cannot be extended to a valid
test: if we extend it by adding b, then the resulting tuple
contains the first input invalid tuple; if we extend it by
adding !b, then the other input invalid tuple will be
contained. This example shows that input invalid tuples
cannot be used directly for validity checking. Note that
generating all MITs from input invalid tuples is similar to
find prime implicants from CNF/DNF formulas.

In order to generate all MITs from a set of invalid tuples,
we first show an operation that can derive a new invalid
tuple from two invalid tuples.

Derivation Rule: Given two invalid tuples u and u’, if
there exists exactly one feature p for which one of the two
tuples contains true and the other contains false, then v = (u

 u’) \{p, !p} is a new invalid tuple.

Algorithm: Generate-All-MITs

Input: a set I of input invalid tuples u1, u2, …un

Output: a set S consisting of all MITs that can be derived

from I

1. initialize S = I

2. do{

3. let S’ = S and E =

4. for each pair of invalid tuples (u, u’) in S {

5. if (a new tuple v can be derived from u and u’

 using the Derivation Rule)

6. E = E {v}

7. }

8. S = S E

9. for each invalid tuple u in S {

10. if (u contains another tuple in S)

11. S = S \{u}

12. }

13. }

14. while (S S’)

15. return S

Fig. 4. Algorithm Generate-All-MITs

The reason is simple: we cannot add p or !p into v since
otherwise the resulting tuple must contain either u or u’,
which is invalid. For example, from invalid tuples {a, b}
and {!b, c}, we can derive a new invalid tuple {a, b, !b,
c}\{b, !b} = {a, c}. The newly derived tuple is also an
invalid tuple. Inspired by the derive operation, we propose
an effective algorithm shown in Fig.4 that can derive all
MITs from a set of invalid tuples.

The algorithm starts with all input invalid tuples (line 1),

then it tries to derive new invalid tuples from existing

invalid tuples, and then adds them to set S (lines 4 to 9). In

the next step, a tuple that contains another tuple in S is

removed from S (lines 10 to 14). The deriving and removing

processes are repeated until set S converges. At last, set S

consists of all MITs that can be derived from input invalid

tuples. An example shown in Fig 5 illustrates each step of

MIT generation. The input invalid tuples are {a, b}, {a, c},

{!b, !c} and {b, !c, d}, and all the MITs are {!b, !c}, {!c, d}

and {a}.

Fig. 5. An example of generating all MITs

This algorithm is guaranteed to generate all MITs that
can be derived from input invalid tuples. It is not hard to see
that at any time, S represents the same constraints as
represented by the set of I of invalid tuples. In line 8, a set E
of invalid tuples is added into S. An invalid tuple in E is in
essence a tuple that can be derived from two existing tuples

in S, thus S E still represents the same constraints. In line
11, we remove invalid tuples that contain another invalid
tuple in S. It is easy to see that S still represents the same
constraints, since the removed tuples implied by existing
formulas in S. Thus the final set S represents the same
constraints as inputs. Furthermore, the removing step (line 9
to 11) guarantees all tuples in S are MITs.

IV. THE TEST GENERATION ALGORITHM

In this section, we present the complete t-way test

generation algorithm named FMTG (Feature Model Test

Generation) for feature models. The pseudo-code is shown

in Fig. 6.

The FMTG algorithm contains two major parts, i.e., MIT

generation and test generation. For MIT generation, we first

convert a feature model into a parameter model while

features are modeled as Boolean parameters and constraints

are modeled as invalid tuples (Section III.A). Then we

generate all MITs using the Generate-All-MITs (Section

III.C). These MITs are then used for validity checking.

Algorithm: FMTG (Feature Model Test Generation)

Input: feature model M, test strength t

Output: a t-way test set S for M

1. model every feature in M as a Boolean parameter

2. model every constraint in M as a set of invalid tuples I

3. generate the set Im of all the MITs from I

4. sort all the parameters in a non-increasing order of the number

 of their appearances in Im and denote them as P1, P2, …, Pn

5. find a valid t-way test set S for the first t parameters

6. for (i from t+1 to n) {

7. let be the set of all the valid t-tuples involving parameter

 Pi and any t-1 parameters before Pi

8. for each partial test in S { //horizontal growth

9. add a value vi for Pi such that the resulting test contains

 no MIT and covers the most uncovered t-tuples in

10. remove from the covered t-tuples

11. } //finish horizontal growth

12. for each t-tuple in { //vertical growth

13. if contains any MIT, remove from

14. else {

15. cover by adding new values to an existing test or

 adding into S a new partial test that contains no MIT

16. }

17. } //finish vertical growth

18. }

19. return S

Fig. 6. Algorithm FMTG

During test generation, we first sort parameters
according to how many MITs are involved. Then we build a
t-way test set for the first t parameters, which are actually all
valid combinations of these parameters (line 5). Next we
extend this test set for one more parameter, and continue to
do so until it builds a t-way test set for all the parameters.
For each new parameter, we need to cover all the t-way
combinations involving the new parameter and any group of
(t-1) parameters among previous parameters. These
combinations are covered in two steps, i.e., horizontal
growth (lines 8 to 11) and vertical growth (lines 12 to 17).
Horizontal growth adds a new parameter for each existing
test. Each value is chosen such that it covers the most
uncovered combinations and covers no MIT. In vertical
growth, the remaining combinations are covered either by
changing an existing test or by adding a new test (line 15).

The test generation part adopts a general IPOG-C test

generation algorithm studied in our recent work [14]. One

major difference is that, validity checking in [14] is handled

by a constraint solver, while in algorithm FMTG, we use

MITs for validity checking. Another difference is in line 4,

we sort all parameters in a nonincreasing order according to

the number of their appearances in the set of all MITs. This

is a heuristic that can reduce the size of a generated test set.

In [14] we sort parameters according to their domain sizes.

However all parameters in the feature model have the same

domain size, thus the original sorting approach cannot apply

to feature models.

V. EXPERIMENTS

We implemented the proposed constraint-handling
strategy and the test generation algorithm FMTG into a tool
named LOOKUP [9]. LOOKUP takes a feature model in the
Simple XML Feature Model (SXFM) format [15] as input
and generates a t-way test set as output. To evaluate the
proposed test generation strategy, we choose 12 largest 1
real-life feature models from the SPLOT feature models
repository [11] [15]. The number of features in these models
ranges from 71 to 290. These systems and the LOOKUP
tool are made publicly available at our website [9].

Our experiments have two parts. In Section V.A, we
evaluate the performance of MIT generation. In Section V.B,
we compare our test generation algorithm to two existing
test generation tools SPLCA [13] and PICT [12]. All these
experiments were performed on a laptop with i5-2450M
2.5GHz CPU and 4GB memory. The generated t-way test
sets are verified by an independent process.

A. Results of MIT Generation

We generated MITs for 12 subject systems and recorded
the number of MITs and generation time in TABLE I. We
also recorded the number of cross-tree constraints, i.e.,
constraints that are explicitly added to a feature model. Input
invalid tuples are invalid tuples directly extracted from
feature model.

TABLE I. RESULTS OF MIT GENERATION

Feature Model
of

Features

of

Cross-tree

Constraints

of given

invalid

tuples

of

MITs
Time (s)

Video Player 71 0 82 81 0.028

Car Selection 72 21 146 156 0.046

Eclipse1-Reuso 72 1 104 183 0.025

J2EE web arch 77 0 111 135 0.021

Transformation 88 0 140 276 0.110

Billing 88 59 153 52 0.017

Coche ecologico 94 2 155 255 0.079

UP estructural 97 2 146 314 0.090

xtext 137 1 173 453 0.075

FM_Test 168 46 294 4801 2.516

Printers 172 0 262 401 0.126

E-Shopping 290 21 399 9995 2114

1 The SPLOT repository is continuously updated. These 12 largest

features were selected in January 2013.

TABLE I shows that, for all 12 feature models except
FM_test and E-Shopping, LOOKUP generated less than
1000 MITs within 1 second. The number of MITs generated
by LOOKUP depends on factors such as the tree structure of
a feature model and the number and type of cross-tree
constraints. This supports our belief that for many practical
systems, the number of MITs is small and can be generated
very fast.

For FM_test, it requires more time to generate a set of
4801 MITs. For E-Shopping, it takes much long time and
generates 9995 MITs. The main reason is due to the nature
of cross-tree constraints in the model and the tree structure.
A cross-tree constraint may connect one or more sub-trees
in the feature model, leading to a large number of implied
constraints between features in these sub-trees. Thus the
number of MIT also becomes large.

In general, MIT generation is relatively fast in practice.
For feature models with moderate size, it usually take a few
seconds to generate all MITs. Furthermore, this process is
independent from test generation and has nothing to do with
the test strength used in test generation. The list of MITs is
an alternative representation of feature model constraints,
and can be used for t-way test generation with any test
strength as well as other general purposes regarding the
validity of test configurations.

B. Results of T-way Test Generation

We compared LOOKUP to two other test generation
tools, SPLCA [16], an implementation of the ICPL
algorithm [13] for t-way test generation, and PICT [12], a
publicly available tool for general combinatorial testing.
The SPLCA tool is by far the fastest test generation tool for
feature models as shown in their evaluation. Thus we did
not compare with other tools that are already compared in
[8].

While LOOKUP and SPLCA can use a XML file in the
SXFM format as input, PICT requires a plain-text file. We
used a parser to get all the parameters and covert invalid
tuples into PICT constraints.

We applied 2-way and 3-way testing in this experiment.
Note that the maximal test strength supported by SPLCA is
3, while our tool supports any test strength. TABLE II
shows the results of 2-way test set generation and TABLE
III shows the results of 3-way test set generation. In these
tables, N/A means the test set for a given feature model was
not generated within one hour. Note that PICT failed to
generate test sets for three feature models, i.e., Billing ,
Printers and E-Shopping, SPLCA failed to generate 3-way
test sets for one feature model, i.e., E-shopping, and
LOOKUP was able to generate test sets for all the feature
models. The best sizes and times are highlighted in tables II
and III.

Results of 2-way test generation show that LOOKUP
generates smaller test sets for most systems. PICT generate
larger test sets because it’s not specially designed for feature
models. Regarding the execution time, PICT and LOOKUP
are faster than SPLCA but the difference is small, since 2-

way test generation is relatively fast. LOOKUP is very slow
on E-Shopping since most time are spent on MIT generation.

TABLE II. COMPARISON OF TEST GENERATION (2-WAY)

Feature Model
PICT 3.3 SPLCA 0.3 LOOKUP

size time (s) size time (s) size time (s)

Video Player 16 13.49 18 0.62 13 0.48

Car Selection 50 0.19 24 0.74 24 0.61

Eclipse1-Reuso 47 0.23 19 0.75 21 0.52

J2EE web arch 36 0.18 18 0.71 17 0.52

Transformation 74 0.3 28 0.79 26 0.95

Billing N/A N/A 15 0.72 13 0.48

Coche ecologico 115 1.93 92 1.24 90 0.87

UP estructural 110 0.34 36 0.93 34 0.73

xtext 40 0.33 24 1.17 17 0.78

FM_Test 100 2.76 43 1.94 40 3.23

Printers N/A N/A 184 2.37 180 2.90

E-Shopping N/A N/A 26 2.95 23 2152.68

TABLE III. COMPARISON OF TEST GENERATION (3-WAY)

Feature Model

Name

PICT 3.3 SPLCA 0.3 LOOKUP

size time (s) size time (s) size time (s)

Video Player 47 14.03 47 3.18 39 0.97

Car Selection 243 6.14 107 4.70 91 1.43

Eclipse1-Reuso 177 5.00 96 6.68 86 1.45

J2EE web arch 132 4.43 73 4.25 67 1.39

Transformation 457 18.23 132 7.61 131 3.00

Billing N/A N/A 46 3.69 39 1.27

Coche ecologico 543 24.30 375 10.61 363 4.72

UP estructural 689 37.42 191 12.08 178 3.44

xtext 195 39.24 102 45.90 80 6.58

FM_Test 563 278.59 222 549.47 243 29.34

Printers N/A N/A 566 174.51 547 58.85

E-Shopping N/A N/A N/A N/A 111 2244.16

TABLE III shows that in terms of execution time,
LOOKUP outperforms the other two tools. For some large
feature models, e.g., FM_Test and Printers, our tool is faster
than SPLCA by one order of magnitude. Also, LOOKUP
produced the smallest test set on all the feature models
except FM_Test. Comparing 2-way and 3-way results, one
may find that the execution time of LOOKUP increases
much slower that other tools. This is because the most time-
consuming step of LOOKUP, i.e., MIT generation, is
independent with test strength.

In summary, our tool is considerably better than PICT
and SPLCA, in terms of test size and execution time. Note

that the execution time of LOOKUP contains both MIT
generation time and test generation time. The first part is
independent with test strength t, while the second part
increases with t. The advantage of LOOKUP can be even
more significant for higher test strengths.

VI. RELATED WORK

In this section we discuss related work on modeling and
testing of software product lines, combinatorial testing, and
constrained combinatorial test generation.

To efficiently test software product lines, many testing
techniques can be used, e.g., reusable component testing
[17] and incremental testing [18]. Reusable component
testing is a testing strategy where unit tests for the core
assets are reused for each product. This strategy does not
test for interaction faults between different components in
the software product lines. Incremental testing tries to
automatically adapt a test case from one version to the next
version based on similarities and differences between the
two versions. There is also a scenario-based method called
ScenTED [19] [20]. ScenTED models extend UML activity
diagrams for software product lines by introducing explicit
representation of variability and then derive application test
cases from the extended diagrams.

Recently several algorithms have been developed that
apply combinatorial testing to software product lines.
Perrouin et al. [21] [22] introduced strategies for t-wise test
generation of software product lines. Machado et al [23]
reviewed strategies for testing products in software product
lines from 1998 to 2012. The key challenge in combinatorial
testing of software product lines is how to deal with
constraints. A common constraint-handling approach is
using a constraint solver [24]. In this approach, validity
checking is performed by constraint solvers [25]. Mendonca
et al. [26] discussed the SAT-based analysis of feature
models, and Johansen et al. [27] investigated covering array
generation for feature models based on SAT solving.

Hadzic et al. [28] reported an approach that first
constructs a Binary Decision Diagram (BDD) [29] to
represent the solution space of all valid configurations, and
then calculates valid domains for the remaining unassigned
variables by extracting values from the BDD. Given a
combination of value-assigned variables, if the BDD shows
no valid domain for any remaining unassigned variable, the
combination is considered invalid. The size of BDD can
vary dramatically depending on the order of the assigned
variables plus unassigned variables. In contrast, we derive
all MITs from a feature model and use them directly for
validity checking. Unlike BDD, the number of MITs is
independent from the order of parameters.

Most combinatorial test generation algorithms use
constraint solvers for constraint handling, such as ICPL [13]
and IPOG-C [30]. The only test generation tool that
systematically uses a similar constraint-handling strategy
like MIT is PICT [12]. PICT uses forbidden tuples for
validity checking. It first generates all necessary forbidden
tuples from input constraints, and then uses them for

validity checking during test generation. However, the
definition of forbidden tuples and the details of how to
generate them are not reported.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an efficient combinatorial test
generation algorithm for software product lines based on a
novel approach of validity checking using minimum invalid
tuples (MITs). Constraints in a feature model are converted
into a set of MITs, and are then used for quick validity-
checking during test generation. Experiments show that the
performance of test generation is greatly improved while the
test size is very competitive as well.

 In the future, we will conduct more experiments on
large feature models to evaluate our approach. We also plan
to apply the constraint-handling approach proposed in this
paper on general systems which may contain non-Boolean
parameters and more complex constraints.

VIII. ACKNOWLEDGMENTS

This work is partly supported by three grants

(70NANB9H9178, 70NANB10H168, 70NANB12H175)

from Information Technology Laboratory of National

Institute of Standards and Technology (NIST).

DISCLAIMER: NIST does not endorse or recommend

any commercial product referenced in this paper or imply

that a referenced product is necessarily the best available

for the purpose.

REFERENCES

[1] K. Pohl, G. Böckle and F. J. v. d. Linden, Software Product

Line Engineering: Foundations, Principles and Techniques,

Springer-Verlag New York, Inc., 2005.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S.

Peterson, "Feature-Oriented Domain Analysis (FODA)

Feasibility Study," Carnegie-Mellon University Software

Engineering, 1990.

[3] T. Thüm, C. Kästner, F. Benduhn and J. Meinicke,

"FeatureIDE: An extensible framework for feature-oriented

software development," Science of Computer Programming,

2012.

[4] D. R. Kuhn, D. R. Wallace and A. J. Gallo Jr., "Software

fault interactions and implications for software testing,"

Software Engineering, IEEE Transactions on, vol. 30, pp.

418-421, 2004.

[5] D. R. Wallace and D. R. Kuhn, "Failure modes in medical

device software: An analysis of 15 years of recall data,"

International Journal of Reliability, Quality and Safety

Engineering, vol. 8, pp. 351-371, 2001.

[6] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker and R. Kuhn,

"Combinatorial Testing of ACTS: A Case Study," in

Software Testing, Verification and Validation (ICST), 2012

IEEE Fifth International Conference on, 2012.

[7] D. R. Kuhn and M. J. Reilly, "An investigation of the

applicability of Experiments to Software Testing," in 27th

NASA/IEEE Software Engineering Workshop, 2002.

[8] M. F. Johansen, Ø. Haugen and F. Fleurey, "An algorithm

for generating t-wise covering arrays from large feature

models," in ACM, 2012.

[9] "http://barbie.uta.edu/~lyu/lookup," [Online].

[10] Y. Lei, R. Kacker, D. Kuhn, V. Okun and J. Lawrence,

"IPOG: A general strategy for t-way software testing," in

Engineering of Computer-Based Systems, 2007. ECBS'07.

14th Annual IEEE International Conference and Workshops

on the, 2007.

[11] M. Mendonca, M. Branco, Cowan and Donald, "SPLOT:

software product lines online tools," in Proceedings of the

24th ACM SIGPLAN conference companion on Object

oriented programming systems languages and applications,

2009.

[12] J. Czerwonka, "Pairwise testing in the real world: Practical

extensions to test-case scenarios," in Proceedings of 24th

Pacific Northwest Software Quality Conference, Citeseer,

2006.

[13] M. F. Johansen, Ø. Haugen and F. Fleurey, "An algorithm

for generating t-wise covering arrays from large feature

models," in Proceedings of the 16th International Software

Product Line Conference-Volume 1, 2012.

[14] L. Yu, Y. Lei, R. Kacker and D. R. Kuhn, "ACTS: A

Combinatorial Test Generation Tool," in IEEE International

Conference on Software Testing, Verification and Validation

(ICST 2013 Tools Track), 2013, in press.

[15] "http://gsd.uwaterloo.ca:8088/SPLOT," [Online].

[16] "http://heim.ifi.uio.no/martifag/splc2012/," [Online].

[17] M. F. Johansen, O. Haugen and F. Fleurey, "A survey of

empirics of strategies for software product line testing," in

Software Testing, Verification and Validation Workshops

(ICSTW), 2011 IEEE Fourth International Conference on,

2011.

[18] E. Uzuncaova, S. Khurshid and D. Batory, "Incremental test

generation for software product lines," Software

Engineering, IEEE Transactions on, vol. 36, pp. 309-322,

2010.

[19] A. Reuys, S. Reis, E. Kamsties and K. Pohl, "The scented

method for testing software product lines," in Software

Product Lines, Springer, 2006, pp. 479-520.

[20] K. Pohl and A. Metzger, "Software product line testing,"

Communications of the ACM, vol. 49, no. 12, pp. 78-81,

2006.

[21] G. Perrouin, S. Sen, J. Klein, B. Baudry and Y. Le Traon,

"Automated and scalable t-wise test case generation

strategies for software product lines," in Software Testing,

Verification and Validation (ICST), 2010 Third International

Conference on, 2010.

[22] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry and Y. Le

Traon, "Pairwise testing for software product lines:

Comparison of two approaches," Software Quality Journal,

vol. 20, pp. 605-643, 2012.

[23] I. do Carmo Machado, J. D. McGregor and E. Santana de

Almeida, "Strategies for testing products in software product

lines," ACM SIGSOFT Software Engineering Notes, vol. 37,

pp. 1-8, 2012.

[24] J. Jaffar and M. J. Maher, "Constraint logic programming: A

survey," The journal of logic programming, vol. 19, pp. 503-

581, 1994.

[25] D. Batory, "Feature models, grammars, and propositional

formulas," Software Product Lines, pp. 7-20, 2005.

[26] M. Mendonca, A. Wąsowski and K. Czarnecki, "SAT-based

analysis of feature models is easy," in Proceedings of the

13th International Software Product Line Conference, 2009.

[27] M. F. Johansen, Ø. Haugen and F. Fleurey, "Properties of

realistic feature models make combinatorial testing of

product lines feasible," in Model Driven Engineering

Languages and Systems, Springer, 2011, pp. 638-652.

[28] T. Hadzic, R. M. Jensen and H. R. Andersen, "Calculating

valid domains for BDD-based interactive configuration,"

arXiv preprint arXiv:0704.1394, 2007.

[29] R. E. Bryant, "Graph-Based Algorithms for Boolean

Function Manipulation," IEEE Transactions on Computers,

vol. 100, pp. 677-691, 1986.

[30] L. Yu, M. Nouroz Borazjany, Y. Lei, R. Kacker and D. R.

Kuhn, "An Efficient Algorithm for Constraint Handling in

Combinatorial Test Generation," in IEEE International

Conference on Software Testing, Verification and Validation

(ICST 2013), 2013, in press.

[31] N. Andersen, K. Czarnecki, S. She and A. Wąsowski,

"Efficient synthesis of feature models," in Proceedings of the

16th International Software Product Line Conference, 2012.

