
Performance Analysis of Hadoop for Query Processing

Tomasz Wiktor Wlodarczyk, Yi Han, Chunming Rong
Department of Computer Science and Electrical Engineering, University of Stavanger, Norway

tomasz.w.wlodarczyk@uis.no

Abstract— Query processing using mostly various NoSQL
languages becomes a significant application area for Hadoop.
Despite significant work on performance improvement of these
languages the performance dependence on basic configuration
parameters seems not to be fully considered. In this paper we
present a relatively comprehensive study into influence the
basic configuration parameters have on performance of typical
types of queries. We choose three queries from Lehigh
University Benchmark that can represent the most typical
challenges and we analyze their dependence on parameters
such as: dataset size, number of nodes, number of reducers and
loading overhead. The results indicate strong dependence on
the amount of reducers and IO performance of the cluster,
which proves the common opinion that MapReduce is IO
bound. These results can help to compare performance
behavior of different languages and serve as a basis for
understanding the influence of configuration parameters on
the final performance.

Keywords-Hadoop, LUBM, query, performance, analysis,
Amazon Web Services

I. INTRODUCTION
Query processing becomes a significant part of research

and development efforts in Hadoop community. The main
area consists of NoSQL approach, with some exceptions.
While presenting and testing new developments various
cluster configurations are used. Moreover, very often not all
the parameters are disclosed e.g. number of reducers.
Comprehensive performance analysis and comparison of
various configurations seems to be necessary to be able to
compare different results, choose optimal test settings, and
also choose further research and development directions.

In our research in this field we have noticed however,
that such comprehensive analysis seems to be absent. This
results in difficulties in results comparison between various
sources and makes the choice of best test setting at least not
fully clear.

Therefore, in the scope of this paper we aim to conduct a
comprehensive performance analysis for different types of
queries for various configurations. We show the dependence
on amount of processing nodes, types of processing nodes
and amount of reducers for several sizes of datasets. We
utilize three types of queries to focus on low selectivity,
high selectivity and complex dependence pattern. The
measurements are performed using Amazon Web Services
as they provides reproducible and publically available test
platform. In this context we also analyze data loading
overhead.

Precise numeric values are less important with respect to
the goal of this work than the trends that they visualize.
Therefore all the results are presented in form of the graphs.
However, numeric values can be obtained by contacting the
authors.

Related Work. Dejun et al. [1] analyze response time
and I/O performance of EC2. Garfinkel [2] demonstrates
throughput and latency of S3 for various locations on
Internet. Ibrahim et al. [3] evaluate Hadoop execution on
Virtual Machines. Stewart [4] compares performance of
several data query languages for Hadoop. These works, as
they focus on a different level of performance analysis, can
complement our work in further efforts of performance
improvement.

Jiang [5] et al. study performance of MapReduce for
database implementation with focus on SQL processing that
utilizes, among others, indexing and fingerprinting based
grouping. This is a comprehensive work that in many
aspects is similar to ours. However, it focuses on a custom
implementation created by authors and it assumes presence
of indexing, grouping, etc., which is not a typical case in the
majority of applications (i.e. NoSQL applications).

Newman et al. [6,7] show performance of their RDF
store for 2 and 3 nodes cluster for different data sizes.
Myung et al. [8] show performance for various cluster sizes
for one size of data set and for various data sets for a fixed
cluster size for authors’ custom implementation of SPARQL
processor. Husain et al. [9,10] demonstrate performance of
their RDF graph processor on 10 nodes cluster. Sun and Jin
[11] show performance of their RDF store on 11 nodes
cluster for various datasets. Mika and Tummarello [12]
show performance of their implementation of RDF query
processing using Pig for two types of queries for three sizes
of the dataset. Those work present partial results with focus
on implementations created by the authors. Moreover, the
study of performance influence of reducers is mostly
ignored.

Contributions. The main contribution of this paper is
the comprehensive performance analysis of Hadoop cluster
configuration for NoSQL query processing. The
experiments are performed for a wide range of different
parameters to give an overview of factors that influence the
performance for different query types. The additional
contribution is analysis of overhead caused by data loading
in Amazon Web Services, which are a popular location for
Hadoop testing.

2011 Workshops of International Conference on Advanced Information Networking and Applications

978-0-7695-4338-3/11 $26.00 © 2011 IEEE

DOI 10.1109/WAINA.2011.130

507

Organization of the Paper. After the Introduction, in
Section 2 we describe and clarify all the main terms and
concepts used in the paper. Description of test
configurations, types of queries used and choice of query
language can be found in Section 3. In Section 4, 5 and 6 we
present results for respectively high selectivity, complex
dependence pattern and low selectivity query. Results for
data loading overhead are presented in Section 7. We
conclude the main points in Section 8.

II. BACKGROUND
In this section we describe and clarify all the main terms

and concepts used in the paper.
Hadoop. The Apache Hadoop1 project develops open-

source software for reliable, scalable, distributed computing.
It is based on MapReduce paradigm introduced by Google
in 2004 that allows creating complex distributed
applications by applying set of map and reduce functions.
Hadoop includes subprojects that provide: distributed file
system, processing framework, query languages, etc. It is
commonly used in industry and it is gaining popularity for
scientific applications.

Query Languages. Query languages can base on
different logic and data structure concepts. In Hadoop
context the most commonly applied concept is called
NoSQL basing its name on the differences to classic
relational database systems that utilize SQL. Two most
common examples of such query languages are Pig2 and
Hive3. In this paper we utilize another emerging language
called Cascalog4 due to its good fit for the test queries.

Amazon Web Services5 (AWS). It is a collection of the
remote computing and storage services provided on the on-
demand basis. They include Elastic Compute Cloud (EC2)
that provides computing power, Simple Storage Service
(S3) that provides storage capabilities, Elastic MapReduce
(EMR) that automatically implements Hadoop on EC2, etc.

Lehigh University Benchmark 6 (LUBM). The
benchmark is intended to evaluate performance of Semantic
Web repositories over large data set. It consists of set of 14
queries and data generator. Some of the queries, that are
language independent, focus strictly on exposing
performance of various data interrelation patterns that are
not specific only to Semantic Web. For our analysis we
focus on three of those queries as explained in detail in
Section 3.

III. TEST SETUP
In this section we describe test setup with respect to

cluster, query and data configuration.

1 http://hadoop.apache.org/
2 http://pig.apache.org/
3 http://hive.apache.org/
4 https://github.com/nathanmarz/cascalog
5 http://aws.amazon.com/
6 http://swat.cse.lehigh.edu/projects/lubm/

All the tests presented in this paper were performed
using Amazon Elastic MapReduce together with other
Amazon Web Services. We have chosen this platform, as it
is widely available, so other researchers are able to perform
other tests using exactly the same conditions. Have we used
our local cluster the results could be still valuable; however,
to the lesser extent.

A. Cluster Configuration
Number of Nodes. All the test were performed for the

total amount of nodes ranging from 2 to 20. It is important
to notice that it means that the actual number of worker
nodes is one less than the total number as one node is
occupied by the name node. As it can be seen further 20
nodes occurred to be a satisfactory high number, as most
often only limited results improvement is visible over 10
nodes.

Types of Instances. For this tests m1.small and m1.large
instances were used as the Hadoop nodes. The main
difference between them is the higher IO performance of the
m1.large instance. Other parameters like CPU, memory and
disk space also differ; however, IO performance seems to be
the key to the results interpretation. We made a conscious
choice not to utilize other, usually more powerful, types of
instances for two reasons. First of all, more powerful
instances in general offer a specialized set of parameters
necessary for very specific applications e.g. big memory,
multi-core processor. It is quite likely that some
performance gain would be observed by utilizing them;
however, their usage seems contradictory to our goal of
providing generic and widely applicable results. Secondly,
the cost of more powerful instances is significantly higher
than the cost of m1.small and m1.large. We consider that an
important argument in the context of one of the aims of
MapReduce and Hadoop which is ability to run on a cluster
of commodity machines.

Number of Reducers. The tests were performed for two
different amounts of reducers: one reducer, the amount of
nodes-1. We have actually performed tests also under
different configurations; however, we do not present all of
them here due to limited space. Those two configurations
show in the clearest way whether performance of different
queries depends on the number of reducers. However, to
determine the optimal amount of reducers is a more
complicated problem and it would require separate analysis,
which we do not attempt here.

B. Query and Data Configuration
Choice of Queries. The tests were based on the data and

queries from LUBM. This choice is not immediately
obvious and it requires a few comments. LUBM is designed
to test triple stores and generates RDF triples in XML
format (that was transformed as explained later). It also
requires some level of reasoning capabilities for some of the
queries. However, several other queries do not require
reasoning and they also interestingly expose potential

508

performance issues in generic query scenarios. In particular,
Query 1 focuses on high selectivity scenario where big
amount of data is loaded and then selection is performed
basing on the simple dependence between two files. Query 2
focuses on complex interdependency pattern between files.
Finally, Query 14 demonstrates a low selectivity scenario.
Those three queries allow analyzing influence of the amount
of nodes, their parameters (mostly IO performance) and
number of reducers on query execution times. One typical
operation that is omitted is simple filtering; however, one
can argue that as it could be implemented in the map
operation it would not have a significant influence on the
results.

Amount of Data. The tests were performed for 6
different sizes of datasets. They corresponded to LUBM
data generated for 50, 100, 200, 500, 1000 and 6000
universities. The data were transformed to obtain the
structure analogous to Abadi [13] that was the most
convenient from the point of view of query execution. The
smallest file size was 13.6MB for one of the files in Query 2
for 50 universities. The largest file was 2.9GB in Query 14
for 6000 universities. In the S3 load test we report only on
the load times of files greater than 100MB to improve the
clarity of the graph.

Query Execution. The test queries: LUBM 1, 2 and 14
were executed using Cascalog. We decided to utilize this
query language as it seemed to have natural correspondence
with the original LUBM query structure. However, those
queries could be also easily executed using Pig or Hive.
Some performance differences could be expected and they
are partially covered in [4]. For all the scenarios data was
first loaded from S3 to HDFS and further queried (read and
written) from HDFS. Load times are reported in Section 7,
query times in Sections 4 to 6.

IV. HIGH SELECTIVITY PERFORMANCE
In this section we present and describe the performance

of a query with high selectivity.
Basing on all the figures in the paper one can notice that

biggest performance improvements can be seen up to 8
nodes, after what they become relatively small. By
comparing Figure 1. with Figure 2., and Figure 3 with
Figure 4. one can notice that the performance of high
selectivity scenario is not significantly dependent on the
amount of reducers. At the same time utilizing nodes with
high IO performance provides significant benefits with time
decrease of the level of 2 up to 4 depending on the
configuration.

Figure 1. Execution time of Q1 in seconds dependent on the amount of
nodes for 50 to 1000 Universites with 1 reducer for m1.small instances

Figure 2. Execution time of Q1 in seconds dependent on the amount of

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.small
instances

0

200

400

600

800

1000

1200

1400

1600

1800

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

0

200

400

600

800

1000

1200

1400

1600

1800

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

509

 Figure 3. Execution time of Q1 in seconds dependent on the amount of
nodes for 50 to 1000 Universites with 1 reducer for m1.large instances

 Figure 4. Execution time of Q1 in seconds dependent on the amount of
nodes for 50 to 1000 Universites with nodes-1 reducers for m1.large

instances

V. COMPLEX INTERDEPENDENCY PERFORMANCE
In this section we present and discuss performance

results for query with complex interdependency pattern
between files.

First of all, strong dependency on the amount of reducers
can be observed. This can be most drastically seen on the
Figure 5. where the performance actually decreases for more
than 6 nodes. The reason for it might be the bigger need for
communication between mappers and the reducer due to
complexity of the query, despite relatively smaller inputs.
However, not enough bandwidth is available due to low IO
performance of EC2 m1.small instances. With more
reducers performance is significantly increased (up to 10
times in some cases).

Secondly, further dependence on the IO performance of
the cluster can be observed. Apart from the general decrease
in times between m1.small and m1.large instances as
observed in the previous section, additional effects can be
noticed. If we compare Figure 5. with Figure 7. we can
notice that high IO performance allows to partly compensate
for the fact of having just one reducer by improving
communication with it. Further, increased amount of
reducers in such a case improves performance (Figure. 8);
however, to relatively lesser extent as in the case of low IO
performance (Figure 6.).

Figure 5. Execution time of Q2 in seconds dependent on the amount of
nodes for 50 to 1000 Universites with 1 reducer for m1.small instances

Figure 6. Execution time of Q2 in seconds dependent on the amount of

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.small
instances

100

175

250

325

400

475

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

100

175

250

325

400

475

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

510

 Figure 7. Execution time of Q2 in seconds dependent on the amount of
nodes for 50 to 1000 Universites with 1 reducer for m1.large instances

 Figure 8. Execution time of Q2 in seconds dependent on the amount of
nodes for 50 to 1000 Universites with nodes-1 reducers for m1.large

instances

VI. LOW SELECTIVITY PEFORMANCE
In this section we present and discuss performance for

query with low selectivity, so effectively very high output.
First of all, similar trends as in the previous sections can

be noticed. However, after closer inspection, we observe the
difference between IO performance with respect to network
performance and disk performance. It is important to note
that the following analysis bases just on the presented data.
Further tests with precise disk and network monitoring
should be performed to confirm the conclusions.

When comparing one-reducer configurations, Figure 9.
and 11., we can notice that configuration with m1.large
instances with high IO performance can avoid performance

decrease with high growing number of nodes. In this
situation higher network performance comes into effect.
However, it does not show any benefits of those additional
nodes. This can be caused by the limitation of the disk
performance, as only one reducer has to write a relatively
big output file to the HDFS. In such a case having more of
cheaper machines with lower IO performance can provide
slightly better results, as observed on Figures 10. and 11.
from 10 nodes up.

Figure 9. Execution time of Q14 in seconds dependent on the amount of

nodes for 50 to 1000 Universites with 1 reducer for m1.small instances

Figure 10. Execution time of Q14 in seconds dependent on the amount of

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.small
instances

200

525

850

1175

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

200

525

850

1175

2
 4
 6
 8
10
12
14
16
18
20

1000U

500U

200U

100U

50U

0

1000

2000

3000

4000

5000

6000

7000

8000

2
 4
 6
 8
10
12
14
16
18
20

6000U

1000U

500U

200U

100U

50U

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2
 4
 6
 8
10
12
14
16
18
20

6000U

1000U

500U

200U

100U

50U

511

Figure 11. Execution time of Q14 in seconds dependent on the amount of

nodes for 50 to 1000 Universites with 1 reducer for m1.large instances

Figure 12. Execution time of Q14 in seconds dependent on the amount of

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.large
instances

VII. LOADING PERFORMANCE
In this section we present and discuss load time overhead

when utilizing S3. This is particularly important for AWS-
based applications, as S3 is the default permanent storage
service for AWS and its performance can impact
performance of the whole application.

Figure 13. presents results of loading files with sizes
ranging from 100 to 2900 MB on a m1.small instances
depending on the amount of nodes. The biggest relative
performance gain is observed in the range up to 8 nodes;
though, further nodes also improve performance.

Figure 13. Load time in seconds dependent on the amount of nodes for

different files sizes for m1.small instances

It is important to correlate these results with result from
previous section in particular Figure. 10. For all the
previous tests data was preloaded from S3 to HDFS, even
though, it is not necessary for proper functioning of EMR.
However, not doing so would significantly lower the
performance. In Figure 14. one can see the results for the
respective load time from Figure 13. added on top of results
from Figure 10. What clearly illustrates the influence of the
overhead of S3 load time for the total performance of the
query. Therefore, for any application where the file will be
loaded more than once we recommend not using S3 directly,
but preloading data into HDFS first. Similar conclusion can
be drawn with respect to saving any intermediate data,
though we do not present the results for that analysis here.

Figure 14. Load and query time in seconds dependent on the amount of

nodes for different files sizes for m1.small instances

0

200

400

600

800

1000

1200

1400

2
 4
 6
 8
10
12
14
16
18
20

6000U

1000U

500U

200U

100U

50U

0

100

200

300

400

500

600

700

800

900

1000

2
 4
 6
 8
10
12
14
16
18
20

6000U

1000U

500U

200U

100U

50U

0

500

1000

1500

2000

2500

3000

3500

4000

2
4
6
8
10
12
14
16
18
20

2900 MB

1500 MB

1000 MB

500 MB

210 MB

104 MB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2
 4
 6
 8
10
12
14
16
18
20

6000U

512

Figure 15. presents results of loading files with sizes
ranging from 100 to 2900 MB on a m1.large instances
depending on the amount of nodes. The biggest relative
performance gain is observed in the range up to 8 nodes;
though, further nodes also improve performance. One can
notice that load time experience similar patterns as for
m1.small instances, however, the general performance is
significantly improved, by the factor ranging from 2 to 4
depending on the size of the file and amount of nodes. This
clearly illustrates the dependence of any data-intensive
MapReduce application on the IO performance of the
cluster.

Figure 15. Load time in seconds dependent on the amount of nodes for

different files sizes for m1.large instances

VIII. CONCLUSIONS
In this paper we presented a comprehensive performance

analysis of Hadoop cluster configuration for NoSQL query
processing.

We have shown that especially in the case of complex
queries the amount of reducers and the IO network
performance of the cluster are important. In case of queries
with very high output, IO disk performance is the limiting
factor but it can be improved by applying more reducers.
Additionally, we have shown that for applications using S3
the load time overhead is significant and that processing
should not be performed on S3 directly.

Moreover, we have demonstrated that in most of the
cases having bigger amount of cheaper machines can be
more beneficial than small amount of more powerful
machines. In particular, that is the case for the reducer
bound scenarios from Sections 5. and 6. Such an approach is
more cost effective, as the cost of m1.large instance is
double of the cost of m1.small.

These results prove a common opinion that MapReduce
applications are IO bound.

Future work will consist of analysis that would point to
the optimal amount of reducers for different application.
Moreover, we would like to measure more precisely the
difference between IO disk and network performance.

We trust that this paper provided an analysis that will
help with decisions about cluster configuration and further
performance improvements of query languages for Hadoop.

REFERENCES
[1] J. Dejun and G.P.C. Chi, “EC2 Performance Analysis for

Resource Provisioning of Service-Oriented Applications.”
[2] S.L. Garfinkel, “An Evaluation of Amazon’s Grid

Computing Services: EC2, S3 and SQS,” CENTER FOR,
2007.

[3] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi,
“Evaluating MapReduce on Virtual Machines: The Hadoop
Case,” Cloud Computing, M. Jaatun, G. Zhao, and C. Rong,
eds., Springer Berlin / Heidelberg, 2009, pp. 519-528.

[4] R. Stewart, “Performance and Programmability of High
Level Data Parallel
Processing Languages: Pig, Hive, JAQL & Java-
MapReduce,” 2010.

[5] J. Dawei, C.O. Beng, S. Lei, and W. Sai, “The Performance
of MapReduce: An In-depth Study,” vol. 3, 2010, pp. 472-
483.

[6] A. Newman, Y. Li, and J. Hunter, “A scale-out RDF
molecule store for improved co-identification, querying and
inferencing” Available:
http://espace.library.uq.edu.au/view/UQ:188605.

[7] A. Newman, Y. Li, and J. Hunter, “Scalable Semantics - the
silver lining of cloud computing” Available:
http://espace.library.uq.edu.au/view/UQ:175239.

[8] J. Myung, J. Yeon, and S. Lee, “SPARQL basic graph
pattern processing with iterative MapReduce,” Proceedings
of the 2010 Workshop on Massive Data Analytics on the
Cloud - MDAC '10, Raleigh, North Carolina: 2010, pp. 1-6.

[9] M. Farhan Husain, P. Doshi, L. Khan, and B.
Thuraisingham, “Storage and Retrieval of Large RDF
Graph Using Hadoop and MapReduce,” Cloud Computing,
M. Jaatun, G. Zhao, and C. Rong, eds., Springer Berlin /
Heidelberg, 2009, pp. 680-686.

[10] M.F. Husain, L. Khan, M. Kantarcioglu, and B.
Thuraisingham, “Data Intensive Query Processing for Large
RDF Graphs Using Cloud Computing Tools,” 2010 IEEE
3rd International Conference on Cloud Computing, Miami,
FL, USA: 2010, pp. 1-10.

[11] Jianling Sun and Qiang Jin, “Scalable RDF store based on
HBase and MapReduce,” Advanced Computer Theory and
Engineering (ICACTE), 2010 3rd International Conference
on, 2010, pp. V1-633-V1-636.

[12] P. Mika and G. Tummarello, “Web Semantics in the
Clouds,” Intelligent Systems, IEEE, vol. 23, 2008, pp. 82-
87.

[13] D.J. Abadi, A. Marcus, and B. Data, “Scalable semantic
web data management using vertical partitioning,” IN
VLDB, 2007, pp. 411--422.

0

100

200

300

400

500

600

700

800

900

2
4
 6
 8
10
12
14
16
18
20

2900 MB

1500 MB

1000 MB

500 MB

210 MB

104 MB

513

