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Abstract— Query processing using mostly various NoSQL 
languages becomes a significant application area for Hadoop. 
Despite significant work on performance improvement of these 
languages the performance dependence on basic configuration 
parameters seems not to be fully considered. In this paper we 
present a relatively comprehensive study into influence the 
basic configuration parameters have on performance of typical 
types of queries. We choose three queries from Lehigh 
University Benchmark that can represent the most typical 
challenges and we analyze their dependence on parameters 
such as: dataset size, number of nodes, number of reducers and 
loading overhead. The results indicate strong dependence on 
the amount of reducers and IO performance of the cluster, 
which proves the common opinion that MapReduce is IO 
bound. These results can help to compare performance 
behavior of different languages and serve as a basis for 
understanding the influence of configuration parameters on 
the final performance. 

Keywords-Hadoop, LUBM, query, performance, analysis, 
Amazon Web Services 

I.  INTRODUCTION 
Query processing becomes a significant part of research 

and development efforts in Hadoop community. The main 
area consists of NoSQL approach, with some exceptions. 
While presenting and testing new developments various 
cluster configurations are used. Moreover, very often not all 
the parameters are disclosed e.g. number of reducers. 
Comprehensive performance analysis and comparison of 
various configurations seems to be necessary to be able to 
compare different results, choose optimal test settings, and 
also choose further research and development directions.  

In our research in this field we have noticed however, 
that such comprehensive analysis seems to be absent. This 
results in difficulties in results comparison between various 
sources and makes the choice of best test setting at least not 
fully clear. 

Therefore, in the scope of this paper we aim to conduct a 
comprehensive performance analysis for different types of 
queries for various configurations. We show the dependence 
on amount of processing nodes, types of processing nodes 
and amount of reducers for several sizes of datasets. We 
utilize three types of queries to focus on low selectivity, 
high selectivity and complex dependence pattern. The 
measurements are performed using Amazon Web Services 
as they provides reproducible and publically available test 
platform. In this context we also analyze data loading 
overhead. 

Precise numeric values are less important with respect to 
the goal of this work than the trends that they visualize. 
Therefore all the results are presented in form of the graphs. 
However, numeric values can be obtained by contacting the 
authors. 

Related Work. Dejun et al. [1] analyze response time 
and I/O performance of EC2. Garfinkel [2] demonstrates 
throughput and latency of S3 for various locations on 
Internet. Ibrahim et al. [3] evaluate Hadoop execution on 
Virtual Machines. Stewart [4] compares performance of 
several data query languages for Hadoop. These works, as 
they focus on a different level of performance analysis, can 
complement our work in further efforts of performance 
improvement. 

Jiang [5] et al. study performance of MapReduce for 
database implementation with focus on SQL processing that 
utilizes, among others, indexing and fingerprinting based 
grouping. This is a comprehensive work that in many 
aspects is similar to ours. However, it focuses on a custom 
implementation created by authors and it assumes presence 
of indexing, grouping, etc., which is not a typical case in the 
majority of applications (i.e. NoSQL applications). 

Newman et al. [6,7] show performance of their RDF 
store for 2 and 3 nodes cluster for different data sizes. 
Myung et al. [8] show performance for various cluster sizes 
for one size of data set and for various data sets for a fixed 
cluster size for authors’ custom implementation of SPARQL 
processor. Husain et al. [9,10] demonstrate performance of 
their RDF graph processor on 10 nodes cluster. Sun and Jin 
[11] show performance of their RDF store on 11 nodes 
cluster for various datasets. Mika and Tummarello [12] 
show performance of their implementation of RDF query 
processing using Pig for two types of queries for three sizes 
of the dataset. Those work present partial results with focus 
on implementations created by the authors. Moreover, the 
study of performance influence of reducers is mostly 
ignored. 

Contributions. The main contribution of this paper is 
the comprehensive performance analysis of Hadoop cluster 
configuration for NoSQL query processing. The 
experiments are performed for a wide range of different 
parameters to give an overview of factors that influence the 
performance for different query types. The additional 
contribution is analysis of overhead caused by data loading 
in Amazon Web Services, which are a popular location for 
Hadoop testing. 
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Organization of the Paper. After the Introduction, in 
Section 2 we describe and clarify all the main terms and 
concepts used in the paper. Description of test 
configurations, types of queries used and choice of query 
language can be found in Section 3. In Section 4, 5 and 6 we 
present results for respectively high selectivity, complex 
dependence pattern and low selectivity query. Results for 
data loading overhead are presented in Section 7. We 
conclude the main points in Section 8. 

II. BACKGROUND 
In this section we describe and clarify all the main terms 

and concepts used in the paper. 
Hadoop. The Apache Hadoop1 project develops open-

source software for reliable, scalable, distributed computing. 
It is based on MapReduce paradigm introduced by Google 
in 2004 that allows creating complex distributed 
applications by applying set of map and reduce functions. 
Hadoop includes subprojects that provide: distributed file 
system, processing framework, query languages, etc. It is 
commonly used in industry and it is gaining popularity for 
scientific applications. 

Query Languages. Query languages can base on 
different logic and data structure concepts. In Hadoop 
context the most commonly applied concept is called 
NoSQL basing its name on the differences to classic 
relational database systems that utilize SQL. Two most 
common examples of such query languages are Pig2 and 
Hive3. In this paper we utilize another emerging language 
called Cascalog4 due to its good fit for the test queries. 

Amazon Web Services5 (AWS). It is a collection of the 
remote computing and storage services provided on the on-
demand basis. They include Elastic Compute Cloud (EC2) 
that provides computing power, Simple Storage Service 
(S3) that provides storage capabilities, Elastic MapReduce 
(EMR) that automatically implements Hadoop on EC2, etc. 

Lehigh University Benchmark 6  (LUBM). The 
benchmark is intended to evaluate performance of Semantic 
Web repositories over large data set. It consists of set of 14 
queries and data generator. Some of the queries, that are 
language independent, focus strictly on exposing 
performance of various data interrelation patterns that are 
not specific only to Semantic Web. For our analysis we 
focus on three of those queries as explained in detail in 
Section 3. 

III. TEST SETUP 
In this section we describe test setup with respect to 

cluster, query and data configuration. 
                                                             

1 http://hadoop.apache.org/ 
2 http://pig.apache.org/ 
3 http://hive.apache.org/ 
4 https://github.com/nathanmarz/cascalog 
5 http://aws.amazon.com/ 
6 http://swat.cse.lehigh.edu/projects/lubm/ 

All the tests presented in this paper were performed 
using Amazon Elastic MapReduce together with other 
Amazon Web Services. We have chosen this platform, as it 
is widely available, so other researchers are able to perform 
other tests using exactly the same conditions. Have we used 
our local cluster the results could be still valuable; however, 
to the lesser extent. 

A. Cluster Configuration 
Number of Nodes. All the test were performed for the 

total amount of nodes ranging from 2 to 20. It is important 
to notice that it means that the actual number of worker 
nodes is one less than the total number as one node is 
occupied by the name node. As it can be seen further 20 
nodes occurred to be a satisfactory high number, as most 
often only limited results improvement is visible over 10 
nodes. 

Types of Instances. For this tests m1.small and m1.large 
instances were used as the Hadoop nodes. The main 
difference between them is the higher IO performance of the 
m1.large instance. Other parameters like CPU, memory and 
disk space also differ; however, IO performance seems to be 
the key to the results interpretation. We made a conscious 
choice not to utilize other, usually more powerful, types of 
instances for two reasons. First of all, more powerful 
instances in general offer a specialized set of parameters 
necessary for very specific applications e.g. big memory, 
multi-core processor. It is quite likely that some 
performance gain would be observed by utilizing them; 
however, their usage seems contradictory to our goal of 
providing generic and widely applicable results. Secondly, 
the cost of more powerful instances is significantly higher 
than the cost of m1.small and m1.large. We consider that an 
important argument in the context of one of the aims of 
MapReduce and Hadoop which is ability to run on a cluster 
of commodity machines. 

Number of Reducers. The tests were performed for two 
different amounts of reducers: one reducer, the amount of 
nodes-1. We have actually performed tests also under 
different configurations; however, we do not present all of 
them here due to limited space. Those two configurations 
show in the clearest way whether performance of different 
queries depends on the number of reducers. However, to 
determine the optimal amount of reducers is a more 
complicated problem and it would require separate analysis, 
which we do not attempt here. 

B. Query and Data Configuration 
Choice of Queries. The tests were based on the data and 

queries from LUBM. This choice is not immediately 
obvious and it requires a few comments. LUBM is designed 
to test triple stores and generates RDF triples in XML 
format (that was transformed as explained later). It also 
requires some level of reasoning capabilities for some of the 
queries. However, several other queries do not require 
reasoning and they also interestingly expose potential 
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performance issues in generic query scenarios. In particular, 
Query 1 focuses on high selectivity scenario where big 
amount of data is loaded and then selection is performed 
basing on the simple dependence between two files. Query 2 
focuses on complex interdependency pattern between files. 
Finally, Query 14 demonstrates a low selectivity scenario. 
Those three queries allow analyzing influence of the amount 
of nodes, their parameters (mostly IO performance) and 
number of reducers on query execution times. One typical 
operation that is omitted is simple filtering; however, one 
can argue that as it could be implemented in the map 
operation it would not have a significant influence on the 
results. 

Amount of Data. The tests were performed for 6 
different sizes of datasets. They corresponded to LUBM 
data generated for 50, 100, 200, 500, 1000 and 6000 
universities. The data were transformed to obtain the 
structure analogous to Abadi [13] that was the most 
convenient from the point of view of query execution. The 
smallest file size was 13.6MB for one of the files in Query 2 
for 50 universities. The largest file was 2.9GB in Query 14 
for 6000 universities. In the S3 load test we report only on 
the load times of files greater than 100MB to improve the 
clarity of the graph. 

Query Execution. The test queries: LUBM 1, 2 and 14 
were executed using Cascalog. We decided to utilize this 
query language as it seemed to have natural correspondence 
with the original LUBM query structure. However, those 
queries could be also easily executed using Pig or Hive. 
Some performance differences could be expected and they 
are partially covered in [4]. For all the scenarios data was 
first loaded from S3 to HDFS and further queried (read and 
written) from HDFS. Load times are reported in Section 7, 
query times in Sections 4 to 6. 

IV. HIGH SELECTIVITY PERFORMANCE 
In this section we present and describe the performance 

of a query with high selectivity. 
Basing on all the figures in the paper one can notice that 

biggest performance improvements can be seen up to 8 
nodes, after what they become relatively small. By 
comparing Figure 1. with Figure 2., and Figure 3 with 
Figure 4. one can notice that the performance of high 
selectivity scenario is not significantly dependent on the 
amount of reducers. At the same time utilizing nodes with 
high IO performance provides significant benefits with time 
decrease of the level of 2 up to 4 depending on the 
configuration. 

 
Figure 1.  Execution time of Q1 in seconds dependent on the amount of 
nodes for 50 to 1000 Universites with 1 reducer for m1.small instances 

 

 
Figure 2.  Execution time of Q1 in seconds dependent on the amount of 

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.small 
instances 
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 Figure 3.  Execution time of Q1 in seconds dependent on the amount of 
nodes for 50 to 1000 Universites with 1 reducer for m1.large instances 

 Figure 4.  Execution time of Q1 in seconds dependent on the amount of 
nodes for 50 to 1000 Universites with nodes-1 reducers for m1.large 

instances 

V. COMPLEX INTERDEPENDENCY PERFORMANCE 
In this section we present and discuss performance 

results for query with complex interdependency pattern 
between files.  

First of all, strong dependency on the amount of reducers 
can be observed. This can be most drastically seen on the 
Figure 5. where the performance actually decreases for more 
than 6 nodes. The reason for it might be the bigger need for 
communication between mappers and the reducer due to 
complexity of the query, despite relatively smaller inputs. 
However, not enough bandwidth is available due to low IO 
performance of EC2 m1.small instances. With more 
reducers performance is significantly increased (up to 10 
times in some cases). 

Secondly, further dependence on the IO performance of 
the cluster can be observed. Apart from the general decrease 
in times between m1.small and m1.large instances as 
observed in the previous section, additional effects can be 
noticed. If we compare Figure 5. with Figure 7. we can 
notice that high IO performance allows to partly compensate 
for the fact of having just one reducer by improving 
communication with it. Further, increased amount of 
reducers in such a case improves performance (Figure. 8); 
however, to relatively lesser extent as in the case of low IO 
performance (Figure 6.). 

 

 
Figure 5.  Execution time of Q2 in seconds dependent on the amount of 
nodes for 50 to 1000 Universites with 1 reducer for m1.small instances 

 
Figure 6.  Execution time of Q2 in seconds dependent on the amount of 

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.small 
instances 
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 Figure 7.  Execution time of Q2 in seconds dependent on the amount of 
nodes for 50 to 1000 Universites with 1 reducer for m1.large instances 

 

 Figure 8.  Execution time of Q2 in seconds dependent on the amount of 
nodes for 50 to 1000 Universites with nodes-1 reducers for m1.large 

instances 

VI. LOW SELECTIVITY PEFORMANCE 
In this section we present and discuss performance for 

query with low selectivity, so effectively very high output. 
First of all, similar trends as in the previous sections can 

be noticed. However, after closer inspection, we observe the 
difference between IO performance with respect to network 
performance and disk performance. It is important to note 
that the following analysis bases just on the presented data. 
Further tests with precise disk and network monitoring 
should be performed to confirm the conclusions. 

When comparing one-reducer configurations, Figure 9. 
and 11., we can notice that configuration with m1.large 
instances with high IO performance can avoid performance 

decrease with high growing number of nodes. In this 
situation higher network performance comes into effect. 
However, it does not show any benefits of those additional 
nodes. This can be caused by the limitation of the disk 
performance, as only one reducer has to write a relatively 
big output file to the HDFS. In such a case having more of 
cheaper machines with lower IO performance can provide 
slightly better results, as observed on Figures 10. and 11. 
from 10 nodes up. 

 
Figure 9.  Execution time of Q14 in seconds dependent on the amount of 

nodes for 50 to 1000 Universites with 1 reducer for m1.small instances 

 
Figure 10.  Execution time of Q14 in seconds dependent on the amount of 

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.small 
instances 
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Figure 11.  Execution time of Q14 in seconds dependent on the amount of 

nodes for 50 to 1000 Universites with 1 reducer for m1.large instances 

 

 
Figure 12.  Execution time of Q14 in seconds dependent on the amount of 

nodes for 50 to 1000 Universites with nodes-1 reducers for m1.large 
instances 

VII. LOADING PERFORMANCE 
In this section we present and discuss load time overhead 

when utilizing S3. This is particularly important for AWS-
based applications, as S3 is the default permanent storage 
service for AWS and its performance can impact 
performance of the whole application. 

Figure 13. presents results of loading files with sizes 
ranging from 100 to 2900 MB on a m1.small instances 
depending on the amount of nodes. The biggest relative 
performance gain is observed in the range up to 8 nodes; 
though, further nodes also improve performance. 

 

 
Figure 13.  Load time in seconds dependent on the amount of nodes for 

different files sizes for m1.small instances 

It is important to correlate these results with result from 
previous section in particular Figure. 10. For all the 
previous tests data was preloaded from S3 to HDFS, even 
though, it is not necessary for proper functioning of EMR. 
However, not doing so would significantly lower the 
performance. In Figure 14. one can see the results for the 
respective load time from Figure 13. added on top of results 
from Figure 10. What clearly illustrates the influence of the 
overhead of S3 load time for the total performance of the 
query. Therefore, for any application where the file will be 
loaded more than once we recommend not using S3 directly, 
but preloading data into HDFS first. Similar conclusion can 
be drawn with respect to saving any intermediate data, 
though we do not present the results for that analysis here. 

 
Figure 14.  Load and query time in seconds dependent on the amount of 

nodes for different files sizes for m1.small instances 
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Figure 15. presents results of loading files with sizes 
ranging from 100 to 2900 MB on a m1.large instances 
depending on the amount of nodes. The biggest relative 
performance gain is observed in the range up to 8 nodes; 
though, further nodes also improve performance. One can 
notice that load time experience similar patterns as for 
m1.small instances, however, the general performance is 
significantly improved, by the factor ranging from 2 to 4 
depending on the size of the file and amount of nodes. This 
clearly illustrates the dependence of any data-intensive 
MapReduce application on the IO performance of the 
cluster. 

 

 
Figure 15.  Load time in seconds dependent on the amount of nodes for 

different files sizes for m1.large instances 

VIII. CONCLUSIONS 
In this paper we presented a comprehensive performance 

analysis of Hadoop cluster configuration for NoSQL query 
processing. 

We have shown that especially in the case of complex 
queries the amount of reducers and the IO network 
performance of the cluster are important. In case of queries 
with very high output, IO disk performance is the limiting 
factor but it can be improved by applying more reducers. 
Additionally, we have shown that for applications using S3 
the load time overhead is significant and that processing 
should not be performed on S3 directly. 

Moreover, we have demonstrated that in most of the 
cases having bigger amount of cheaper machines can be 
more beneficial than small amount of more powerful 
machines. In particular, that is the case for the reducer 
bound scenarios from Sections 5. and 6. Such an approach is 
more cost effective, as the cost of m1.large instance is 
double of the cost of m1.small. 

These results prove a common opinion that MapReduce 
applications are IO bound. 

Future work will consist of analysis that would point to 
the optimal amount of reducers for different application. 
Moreover, we would like to measure more precisely the 
difference between IO disk and network performance. 

We trust that this paper provided an analysis that will 
help with decisions about cluster configuration and further 
performance improvements of query languages for Hadoop. 
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