
ADAPTIVE RESOURCES PROVISIONING FOR GRID APPLICATIONS
AND SERVICES

A. Filali and A. S. Hafid
Network Research Lab

University of Montreal, Canada
Email {afilali, ahafid}@iro.umontreal.ca

M. Gendreau
CIRRELT

University of Montreal, Canada
Email: michel.gendreau@cirrelt.ca

Abstract - Applications utilizing Grid computing
infrastructure usually require resources allocation (e.g.,
bandwidth and CPU) to satisfy their Quality of Service
(QoS) requirements. Given the dynamic nature of grid
computing, QoS support and adaptation must be a high
priority to successfully support those applications. In
this paper, we present an adaptive resources
provisioning scheme that optimizes the resources
utilization while satisfying the required QoS. More
specifically, it minimizes the request blocking
probability and, thus, maximizes the revenues of the
infrastructure provider.

Keywords- resources provisioning, adaptation, Grid, Quality
of Service, Integer programming, Heuristics

I. INTRODUCTION
Grid computing provides a global-scale distributed
computing infrastructure for executing scientific and
business applications [5]. Many of these applications,
which have soft-real time constraints, require QoS support
and assurance to execute properly. This makes it
imperative to provide more stringent QoS assurances
beyond those provided by the basic Grid infrastructure. In
this context, a service level agreement is necessary, that
specifies exactly all expectations and obligations in the
business relationship between the provider and the
customer [4, 8, 10]. The provider has to allocate the
amount of resources, e.g., CPU and bandwidth, necessary
to satisfy the agreed upon level of service. In [6], the
authors present a performance tuning system that reflects
changing requirements, applying real-time adaptive control
technique to dynamically adapt to changing application
resource demands and system resources availability. The
authors in [9] present a mechanism supporting open
reservations to deal with the dynamic Grid and providing a
practical solution for agreement enforcement

Considerable research efforts have been dedicated to
QoS management in Grid systems with particular emphasis
on network resources [1,2,3,7]. Most of existing
approaches, if not all, assume one QoS value for each type
of resources, e.g., 2 Mbps for bandwidth and 100 CPU
cycles, during the time interval [startTime, stopTime]. The
authors in [1] propose a “Grid QoS Management”
framework that includes activities to manage QoS, such as
enabling users to specify their QoS, selection and
allocation of resources according to QoS requirements,
monitoring to keep track of resources availability, etc.
Particularly, they propose an adaptation algorithm that

reserves resources for three types of services (‘Guaranteed’,
‘best effort’, and an ‘adaptive’); the algorithm tries to satisfy
each new request by adjusting resources reservations
between the three types of services (e.g., reducing the
amount of resources reserved for a “best service” request to
accommodate a “guaranteed” service request). The
adjustment helps avoiding the underutilisation of the Grid
resources. However, the proposed approach handles only
one QoS value for each type of resource.

We believe that the utilization of resources can be
considerably improved by allowing users to specify more
than one value for each type of resources; indeed, this is
suitable for several Grid applications for which the
requirements can be satisfied using more than one value of
QoS for a given resource. For example, at time currentTime,
a Grid application requires the transfer of a file F (size=60
Gb) from A to B within 10 minutes (e.g., at
currentTime+10, the application will have the necessary
CPU cycles to process the file). This request can be satisfied
using different bandwidth reservations: 1Gbps for 1 minute,
500 Mbps for 2 minutes, 250 Mbps for 4 minutes, etc. The
reservation that will be selected will depend on the amount
of resources available at currentTime.

In this paper, we propose an adaptive scheme that
maximizes network utilisation, minimizes request blocking
probability which represents a crucial factor on the user
side, and thus maximizes the provider’s revenues. The basic
idea behind our proposal is to adjust reservations, upon
receipt of a new request, upon departing an existing request
or upon service degradation, in a way to maximize the
amount of reserved resources and minimize the number of
requests rejected due to resources shortage. Our approach
assumes that (a) a request includes a set of acceptable QoS
values; and (b) one type of resources (e.g., bandwidth or
CPU); we are currently working on extending the proposed
approach to allow for two or more types of resources that
are interrelated (e.g., bandwidth and CPU). It will be the
subject of a future paper submission.

More specifically, we present an optimization problem
formulation that optimizes the resource utilization/provider
revenues and analyze its performance compared with a
classic approach. The essence of our approach is to model
resource allocation as an integer-programming problem and
develop heuristics to solve, with an acceptable response
time, the resulting optimization problem.

The remainder of the paper is organized as follows.
Section 2 presents the optimization problem formulation.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE 186

Section 3 describes a first heuristic, called LOH (Local
Optimization Heuristic), for the problem resolution.
Section 4 presents a second heuristic, called GOH (Global
Optimization Heuristic), for the problem resolution.
Section 5 presents simulation results. Finally, section 6
concludes the paper.

II. OPTIMIZATION PROBLEM FORMULATION
Integer programming is a technique for solving certain

kinds of problems: maximizing the value of an objective
function subject to constraints, where the objective
function and constraints are all linear expressions. In the
following, we describe a model based on binary integer
programming technique and discuss how this model can be
used to overcome the grid specific challenges, discussed in
the introduction, in solving the resource reservation
problem.

We formulate the proposed model as binary integer
programming (IP) problem. Three inputs are required: a set
of binary variables, an objective function, and a set of
constraints (both the objective function and the constraints
must be linear). IP attempts to maximize or minimize the
value of the objective function by adjusting the values of
the variables while enforcing the constraints. The
resolution of the IP model consists of the optimal value of
the objective function and the final values of the variables.
In the following, we present how the proposed adjustment
of resources reservation is mapped to an IP problem.

Let us define the following variables:
• n: represents the number of resources of the same type

(e.g., a resource can be a CPU/server or an LSP in a
MPLS network).

• m: represents the number of clients/requests currently
being served in the system.

• Ei: represents the number of acceptable quality values for
a request i (e.g., {10 Mbps, 5 Mbps, 1 Mbps}; in this
case Ei=3).

• rijk: represents the portion of resource j used to satisfy the
kth acceptable quality value of request i.

• Rj,max: represents the maximum capacity of resource j.
• cijk : represents unit cost when resource j is used to

satisfy the kth acceptable quality value of request i.
• xijk: represents a binary variable; it assumes 1 when the

amount rijk of resource j is affected to request i;
otherwise, it assumes 0.

• tei: represents the end time of the request i.
• tsi: represents the start time of the request i; tei-tsi

represents the duration of the request.
By means of these variables, the model can be

formulated as the following integer program.

Objective function

Max ∑∑∑
= = =

−
m

i

n

j

Ei

k

ijkijkijk tsiteixrc
1 1 1

)(** (1)

Constraints

∑∑
= =

=
n

j

Ei

k

ijkx
1 1

1 For i=1...m (client) (2)

∑∑
= =

≤
m

i

Ei

k
jijkijk Rxr

1 1
max,* For j=1 ... n (resource) (3)

xijk ∈ {0, 1} (4)

The objective function (1) represents the provider’s
revenues to be maximized. Constraint (2) ensures that a
request will be supported by one resource among n existing
resources, constraint (3) ensures that the total amount of
resources allocated does not exceed the maximum capacity
of each resource, and constraint (4) ensures that the
variables are binary.

III. PROBLEM RESOLUTION
The goal is to have an optimal solution (i.e., optimal

adjustment of resources reservation) any time changes occur
in the system. More specifically, a new user request, an
existing request termination, or service degradation requires
the resolution of the integer program (see Section 2). The
exact optimal solution of the problem can be easily
computed using any Operational Research tool (e.g., Cplex
[13]); however, this will incur an unacceptable response
time (e.g., in terms of hours and days), especially for large
number of requests and resources.

The response time is of critical concern. Indeed, the
resolution process should last a very short period of time
(e.g., less than a second) to be useful. Otherwise, the system
will not be able to provide a response (e.g., in response to a
user request) in an acceptable time. In this paper, we define
two heuristics to solve the integer program in a very short
period of time compared to the exact solution. In the
following, we describe the first proposed heuristic, called
LOH (Local Optimization Heuristic), behaviour for each
event that triggers the resolution of the program. LOH is
considered as a local heuristic since it uses Cplex on a
selected subset of resources. The second heuristic, called
GOH (Global Optimization Heuristic), is presented in
Section 4.
A. LOH: New request

In this case, the system receives a user request Di that
includes a list, (Q1, Q2,...,Qm), of acceptable quality values
where Q1 represents the minimum acceptable quality and
Qm the most desirable quality. The system maps the list of
qualities to a list of resources (RQ1, RQ2, …, RQm) that are
needed to satisfy the requested qualities (e.g., to satisfy Q1,
an amount of resources equal to RQ1 is needed). When
dealing with a quality, such as bandwidth and CPU cycles,
the case of most Grid applications, the mapping is
straightforward since the quality and the corresponding
amount of resources are the same.

The proposed heuristic starts by determining the resource
j (e.g., computer j or LSP j) that has the most available

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

187

resources Ravail, max (e.g., the most available CPU cycles
or the most available bandwidth) among the n resources
(e.g., n computers or n LSPs) under consideration. Then, it
checks whether Ravail, max is bigger than RQ1 (i.e.,
Ravail, max>=RQ1). If the response is yes, then the
heuristic determines RQj<= Ravail, max (1<=j<=m), such
that j=m or RQj+1> Ravail, max , and then allocates RQj
to satisfy Qj of Di.

If Ravail, max is smaller than RQ1, the heuristic
determines resource j, such that RavailRed, max = Rjavail +
Rjred = max(Riavail + Rired) for 1<=i<=n where Riavail
is the amount of available resources for resource i and
Rired is the total amount of resources that can be reduced
from requests currently being served. Let us note that the
amount of resources R allocated to request k being served
by resource i can be reduced by an amount equal to the
difference between R and the amount of resources required
to satisfy the minimum acceptable quality of request k; the
amount of reduction is equal to zero if request k is
minimally accommodated by the system (i.e., the system
reserved just enough resources to support the minimum
acceptable quality of request k). Then, the heuristic checks
whether RavailRed, max is bigger than RQ1 (i.e., Ravail,
max>=RQ1). If the response is yes, then the heuristic selects
a number of requests (being served by resource j) for
which the amount of allocated resources is reduced (to
satisfy a lower but still acceptable quality) in a way that the
amount of available resources for resource j together with
the sum of reductions can accommodate RQ1. In this case,
the reservations of a number of active requests are updated
with the new values (after reduction).

If RavailRed, max is smaller than RQ1, then the request
cannot be satisfied by a single resource. In this case, the
heuristic determines resource m, such that Rmavail +
Rmred = max(Riavail + Rired) for 1<=i≠j<=n. Then it
checks whether (Rjavail + Rjred)+(Rmavail + Rmred) is
bigger than RQ1; if the response is yes, a number of
requests (being served by resources j and m) for which the
amount of allocated resources is reduced (to satisfy a lower
but still acceptable quality) in a way to accommodate RQ1.
Otherwise, the same process is repeated to consider other
resources. The process terminates when RQ1 can be
accommodated or when all n resources are considered
without success.
B. LOH: request termination

A request termination (i.e., session corresponding to the
request terminates) leads to resources being released. Thus,
it is an opportunity to provide better quality to requests
currently being served if not already getting the most
desirable quality (included in the list of acceptable qualities
of the request)

The heuristic determines, by using Uniform Random
Number Generator, requests currently being served by
resource j (the terminating request has been served by
resource j) and increases their quality, in accordance to the

list of acceptable qualities for each request, using the
amount of released resources by the terminating request.
With this operation, the resources utilisation is optimized
and thus the provider’s revenues.
C. LOH: quality degradation

Quality degradation occurs generally in case of failure;
indeed, a partial or full failure of a resource will degrade the
quality of requests currently being served by this resource.
In the worst case scenario, the service provided to these
requests is terminated (e.g., computer failure or LSP failure)
and the users are notified. The proposed heuristics operates
in case of quality degradation in the same way as in the case
of a new request. Indeed, all failed requests are processed as
new requests (see Section 3.A). One of the key challenges is
to minimise service disruption; this can be achieved if the
response time to failure(s) is minimized.

IV. GLOBAL OPTIMIZATION HEURISTIC
The heuristic presented in Section 3 enables local

adjustment of resources in order to accommodate a new
request, respond to quality degradation, or respond to
request termination. We believe that these adjustments
provide “local” optimization and further global optimization
is possible. Indeed, if all resources and all requests being
served are considered, a global optimization is needed.

In this section, we propose a second heuristic, called
Global Optimization Heuristic (GOH), which can be used in
conjunction with the first heuristic (LOH). The first
heuristic can be used to produce an initial solution that can
be optimized, periodically for example, running GOH in the
background.

GOH is based on an ejection chain neighbourhood
applied to GAP (generalized assignment problem) [11, 12].
It consists of moving more than one task from the current
agent to a new agent. In this paper, an agent represents a
resource like a computer or a LSP, and a task represents the
amount of resources required to satisfy an acceptable
quality. The neighbourhood structure based on ejection
chains (NSEC) was initially introduced by Glover [11] and
has been applied to several problems since then. NSEC
consists of two phases. In the first phase, NSEC removes a
task i from an agent j, then assigns task i to a different agent
w (w≠j). If agent w cannot accommodate task i, NSEC, in
the second phase removes a task k from agent w, assigns it
to another agent z, with z≠w but it may be equal to j, and
then tries to assign task i to agent w.

With some changes to NSEC, we define our heuristic
GOH as follows. First, let us define S* and L.
- Let S*=(X1(x1.1.1, x1.1.2,…, x1. n. e), X2(x2.1.1, x2.1.2,…, x2.

n..e),…, Xm(xm.1.1, xm.1.2,…, xm. n..e)) be the initial solution ,
given by LOH, where Xi(xi.1.1, xi.1.2,…, xi.n.e) represents a
vector of n*e binary variables associated with request
Di(q1,q2,..qk,..,qe); xi.j.k=1 if qk, among e acceptable
qualities, is accommodated using resource j; otherwise,
xi.j.k=0. Only a single variable assumes 1 while all others
are equal to 0 (see details in Section 3).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

188

- Let ‘L’ represents the list of requests for which a quality
improvement is possible. A request Di(q1,q2,..qk,..,qe)
belongs to L if and only if the amount of resources
reserved for Di supports qj with j≠e (assuming that qe is
the most desirable quality and q1 is the minimum
acceptable quality).
The operation of GOH can be summarized as follows.

GOH selects, randomly (or traverses the list L starting
from the first element), a request Dh that belongs to L; Dh
is associated with Xh (xh11, xh12… xh. n..e) belonging to S*. If
xh. n..e ≠ 1, then the following steps are executed.
- Let Rqk (required to support qk) represents the amount of

resources in resource j reserved to Dh. GOH determines
resource m, among n resources, with the most available
resources Ravail.

- If Ravail >= Rqk+1, then GOH selects resource m to
support Dh with the best quality possible ql; in this case,
Rql<= Ravail and (Rql+1> Ravail or l=e)> in the worst case
scenario l=k+1.

- Otherwise, GOH determines a request D from list L that
satisfies the two conditions: (1) the amount of resources,
Rq, currently reserved for D, in resource z, is smaller
than Rqk; and (2) Rq+available resources in z=>Rqk+1. If
D exists then, GOH reserves resources in resource z to
accommodate the best quality possible for Dh (the
minimum is qk+1) and reserves resources in resource j to
accommodate q for D; in this case, GOH enables better
utilisation of resources by providing better quality for
Dh.

- The process is repeated until all requests in L are
considered.

V. SIMULATIONS RESULTS
In this section, we evaluate and compare a number of

schemes via simulations. More specifically, we define 4
schemes: (1) Classic scheme: It enables the support of the
best quality available to a new request; however, quality
remains unchanged during the session (i.e., duration of the
request). If the minimum quality cannot be supported the
request is rejected. This scheme corresponds to the
behaviour of existing schemes; (2) LOH; (3) LOH+GOH:
It represents a combination of LOH and GOH; LOH is
used to give the initial solution while GOH is launched
periodically in the background to perform global
optimization; and (4) Exact solution of the IP problem.

In sub-section A, we compare the classic scheme, LOH,
and LOH+GOH in terms of (averages of) revenues and
rejection ratios produced by different simulations. In sub-
section B, we evaluate LOH+GOH while in sub-section C
we compare LOH+GOH against an exact solution (of the
IP model described in Section 2).

We implemented the schemes using C++; we used
CPLEX, running on Linux Machine, to resolve LOH and
determine an exact solution. Table 1 shows the values of
the simulation parameters. We use a simple price function:
prix(x) = 5 times x, where x is the quality. More
sophisticated price functions can be used.

Table 1. Simulations parameters
Simulations parameter Value
Number of resources: 1000
Capacity of each resource 15
Number of requests 6000
Number of acceptable qualities 4
quality Generated using Uniform

Random Number
Generator in the interval
[1,9]

Request inter-arrival time (in
seconds)

Generated using Uniform
Random Number
Generator in the interval
[0,2].

Request duration (in minutes) Generated using Uniform
Random Number
Generator in the interval
[15,60].

GOH Optimization periodicity

90 seconds

A. REVENUES AND REJECTION RATIO
Figure1 shows clearly that LOH+GOH generated the

most revenues when 6000 requests were served. Classic
scheme generated, in the case of 6000 requests, a revenue
which is almost 4 times smaller than the revenues generated
by LOH+GOH; more specifically after 6000 requests have
been served, classic scheme generated 5.800E+08 while
LOH+GOH generated 1.94E+09. LOH generated revenues
better than classic scheme but two times smaller than
LOH+GOH.

Figure1. Revenues Vs schemes

Figure 2 shows that an average of 50% of the requests is

rejected when using classic scheme; this is caused by the
fact that this scheme allocates the maximum requested
quality, whenever possible, without any reduction of quality
during the session. Using LOH the rejection ratio is about
6%; this is explained by the fact that LOH uses CPLEX on a
subset of resources. CPLEX tries to exploit, in order to
accept a new request, the availability in a set of resources
(in opposition to a single resource) and possibly reduces the
qualities of requests being served; this definitively increases
the chance of accept a new request.

While LOH+GOH supports similar rejection ratio
compared to LOH, it outperforms it in terms of revenues.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

189

This can be explained by the fact that LOH+GOH uses
GOH in background and this increases considerably the
use of resources and thus the revenues.

Figure 2. Rejection ratio Vs. Schemes

B. LOH+GOH: REVENUES VS. PERIODICITY

The purpose of this section is to see how the revenues
generated by LOH+GOH evolve when the periodicity of
executing GOH in the background changes.

Figure 3. Revenues Vs. Periodicity

Number of movements

0
500

1000
1500
2000
2500
3000
3500
4000

0 2000 4000 6000 8000
Number of requests

Figure 4. Movements Vs requests (using LOH+GOH)

Figure 3 shows that using smaller periodicity for running

GOH in the background gives bigger revenues. However,
running GOH many times in the background may cause
requests be moved many times among resources; this may
be not acceptable in terms of the cost of moving requests
from one machine to another machine or rerouting traffic
from one LSP to another LSP. This being said, our
simulations results indicate that the number of movements
(between resources) per request does not exceed one
movement for the duration of the request; Figure 4 shows

that just over 50% of each 1000 requests are moved from
one resource to another resource.
C. LOH+GOH Vs. EXACT SOLUTION

In this section, we compare LOH+GOH against an exact
solution of the IP problem (see Section 2) in terms of
revenues, number of movements per request, and response
time. In general, getting an exact solution with realistic
parameters (i.e., large size problem) is almost impossible,
and in order to make this comparison successfully we have
changed the values of the following simulations parameters:
(1) Number of resources= 100 (instead of 1000); and (2)
Number of requests= 170 (instead of 6000). We used Cplex
for the exact solution.

Figure 5 shows that the exact solution generates slightly
more revenues than LOH+GOH; however, the difference is
minimal.

Revenues

0.00E+00
1.00E+07
2.00E+07
3.00E+07
4.00E+07
5.00E+07
6.00E+07
7.00E+07
8.00E+07

LOH+GOH CPLEX

Figure 5. Revenues: LOH+GOH Vs. Exact solution

Figure 6 shows the average of movements per each

request, by the end of the simulations,, executed by Cplex to
produce an exact solution. The average of movements
decreases when the number of requests increases. This can
be explained by the fact that, for each Cplex execution
processing a new request, already accommodated requests
are moved trying to accommodate the new request. For
example, request 7 has been moved 135 times by the end of
the simulations, which represents, after processing request
number 150, 135 movements in 143 (150-7) executions of
Cplex; it corresponds to almost one movement per Cplex
execution (135/143). This is not acceptable for most of
applications. With LOH+GOH (Figure 4), a request is
moved, in average, one time by the end of the simulations.

Figure 6. Exact solution: Requests Vs. movements

Figure 7 shows that the response time varies from 0 to

270 seconds (4min 30seconds) when executing Cplex to

Number of movements

0
20
40
60
80

100
120
140
160

0 50 100 150 200
Request number

Revenues

0.00E+00
5.00E+08
1.00E+09
1.50E+09

2.00E+09
2.50E+09

90 150 350 500
Periodicity (seconds)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

190

determine an exact solution while it is less than one second
when using LOH. When the number of requests exceeds
170, Cplex was not able to return an exact solution after
several hours of execution (not shown in Figure 7).

Figure 7: Responses time Vs Requests

D. ANALYSIS

We conclude that LOH+GOH is suitable to resolve the
adaptive provisioning issues in Grid applications/services
or any other distributed applications that require QoS
assurances. In the following, we summarize our findings
related to the proposed solution.
• The response time is smaller than 1 second; computing

an exact solution causes a response time to exceed the
5 minutes for small size problems (see figure 7); for
large size problems, the response time is “infinite”.

• At a maximum a single movement, per request,
between resources is required. Indeed, just over 50%
of requests are moved once between resources (see
figure 5). Computing an exact solution causes several
movements, per request, between resources (see figure
6). The cost of these movements is not acceptable for
most applications.

• It generates slightly less revenues than the exact
solution. This is a small price to pay in order to
produce results with acceptable response time and
fewer movements of requests between resources.

• The rejection ratio, which presents a crucial factor for
the user side, is small.

VI. CONCLUSION
In this paper, we proposed an adaptive scheme that

maximizes network utilisation, minimizes request blocking
probability, and maximizes the provider’s revenues. The
basic idea behind our proposal is to adjust reservations,
upon receipt of a new request, upon departing an existing
request or upon service degradation, in a way to maximize
the amount of reserved resources and minimize the number
of requests rejected due to resources shortage.

More specifically, we developed an optimization model
using BIP (binary integer programming). Then, we defined
a heuristic (LOH) to resolve BIP with an acceptable (a)
response time and (b) number of movements per request. A
second heuristic was developed in order to be used in
combination with LOH for better optimization of resources

utilization. The simulation results show that LOH+GOH
outperforms existing provisioning schemes in terms of
revenues and rejection ratio. It also provides better
performance than an exact solution while providing slightly
less revenues.

Currently, we are working on extending the proposed
model to consider more than one type of interrelated
resources (e.g., CPU and bandwidth).

REFERENCES
[1] R. Al-Ali, A. Hafid, O. Rana and D. Walker, An

Approach for QoS Adaptation in Service-Oriented
Grids, The Journal of Concurrency: Practice and
Experience, Vol. 16, Issue 5, Pages 401- 412 , 2004.

[2] A. Hafid and G. Bochmann, Quality of Service
Adaptation in Distributed Multimedia Applications,
ACM Springer-Verlag Multimedia Systems Journal,
Vol. 6, No. 5, Pages 299- 315, 1998.

[3] I. Foster and A. Roy, A Quality of Service Architecture
that Combines Resources Reservation and Application
Adaptation, 8th International Workshop on Quality of
Service (IWQOS 2000), 2000.

[4] D. A. Reed and C. L. Mendes, Intelligent Monitoring for
Adaptation in Grid Applications, In Proceedings of the
IEEE, Vol. 93, Issue 2, Pages 426- 435, 2005.

[5] I. Foster and C. Kesselman, eds., The Grid 2: Blueprint
for a New Computing Infrastructure, Morgan
Kaufmann, San Francisco, 2003.

 [6] R. L. Ribler, J, S. Vetter, H Simitci, and D. A. Reed,
Autopilot: Adaptive Control of Distributed
Applications, 7th IEEE Symp. On High Performance
Distributed Computing, 1998.

[7] B. Li and K. Nahrstedt, A Control-Based Middleware
Framework for Quality-of-Service Adaptations, IEEE,
Vol. 17 Issue 9, Pages 1632- 1650, 1999.

 [8] J.Li, R.Yahyapour, A Negotiation Model Supporting
Co-Allocation for Grid Scheduling, 7th IEEE/ACM
International Conference on Grid Computing, 2006.

 [9] M. Siddiqui, A. Villaz and T. Fahringer, Grid capacity
planning with negotiation-based advance reservation
for optimized QoS, ACM/IEEE conference on
Supercomputing, 2006.

[10] B. Doshi, S. Wang, P. Kim; D. Goldsmith, B.
Liebowitz, K. Park, Cooperative Service Level
Agreement, Military Communications Conference,
2006.

[11] F. Glover, Ejection Chains, Reference Structures and
Alternating Path Methods for Traveling Salesman
Problem, Discrete Appl. Math., Vol 65, No.1- 3, Pages
223-253, 1996.

[12] M. Yagiura, T. Ibaraki and F. Glover, An Ejection
Chain Approach for the Generalized Assignment
Problem, INFORMS Journal on Computing, Vol 16,
No. 2, Pages 133-151, 2004.

 [13] ILOG CPLEX. http://www.ilog.com

Responses times in seconds

0
50

100
150
200
250
300

0 50 100 150 200
Request number

Cplex
LOH

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

191

