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ABSTRACT 
As we enter the era of CMP platforms with multiple threads/cores 
on the die, the diversity of the simultaneous workloads running on 
them is expected to increase. The rapid deployment of 
virtualization as a means to consolidate workloads on to a single 
platform is a prime example of this trend. In such scenarios, the 
quality of service (QoS) that each individual workload gets from 
the platform can widely vary depending on the behavior of the 
simultaneously running workloads. While the number of cores 
assigned to each workload can be controlled, there is no hardware 
or software support in today’s platforms to control allocation of 
platform resources such as cache space and memory bandwidth to 
individual workloads. In this paper, we propose a QoS-enabled 
memory architecture for CMP platforms that addresses this 
problem. The QoS-enabled memory architecture enables more 
cache resources (i.e. space) and memory resources (i.e. 
bandwidth) for high priority applications based on guidance from 
the operating environment. The architecture also allows dynamic 
resource reassignment during run-time to further optimize the 
performance of the high priority application with minimal 
degradation to low priority. To achieve these goals, we will 
describe the hardware/software support required in the platform as 
well as the operating environment (O/S and virtual machine 
monitor). Our evaluation framework consists of detailed platform 
simulation models and a QoS-enabled version of Linux. Based on 
evaluation experiments, we show the effectiveness of a QoS-
enabled architecture and summarize key findings/trade-offs.   

Categories and Subject Descriptors 
B.3.2 [Hardware]: Design Styles of Memory Structures – cache 
memories.  

General Terms: Algorithms, Management, Measurement, 
Performance, Design, Experimentation 

Keywords: Quality of Service, CMP, Cache/Memory, 
Performance, Service Level Agreements, Resource Sharing 
Principles 

1. INTRODUCTION 
As the momentum behind chip multiprocessor (CMP) 
architectures [7][12][18] continues to grow, it is expected that 
future microprocessors will have several cores sharing the on-die 
and off-die resources. The success of CMP platforms depends not 

only on the number of cores but also heavily on the platform 
resources (cache, memory, etc) available and their efficient usage. 
In general, CMP architectures are being designed to perform well 
when a single parallel application is running on them. However, 
CMP platforms will also be used to run multiple applications 
simultaneously. The rapid deployment of virtualization 
[2][21][23][31] as a means to consolidate multiple applications 
onto a platform is a prime example. 
When multiple applications run simultaneously on CMP 
architectures, the quality of service (QoS) that the platform 
provides to each individual application will not be deterministic 
because it depends heavily on the behavior of the other 
simultaneously running workloads. As expected, recent studies 
[3][5][9][10][19][27] have indicated that contention for critical 
platform resources (e.g. cache) is the primary cause for this lack 
of determinism and QoS. In this paper, we highlight this problem 
further and motivate the need for QoS support in CMP platforms. 
We focus on two important platform resources – cache (space) 
and memory (bandwidth) – in our investigation and identify QoS 
policies and mechanisms to efficiently manage these resources in 
the presence of disparate applications (or threads). 
Recent studies on partitioning of (cache) resources have either 
advocated the need for fair distribution [3] between threads and 
applications or the need for unfair distribution [5] with the 
purpose of improving overall system performance. In contrast, the 
work presented here aims to improve the performance of an 
individual application at the potential detriment of others with 
guidance from the operating environment. This is motivated by 
usage models such as server consolidation where service level 
agreements motivate the degree of performance isolation [1][4] 
desired for some applications. Since the relative importance of the 
deployed applications is best known in the operating environment, 
we introduce the need for software-guided priorities (e.g. assigned 
by administrators) to efficiently manage hardware resources. 
While the objective of priorities may be intuitive, the 
considerations, trade-offs and implications of these priorities are 
far from obvious. In this paper, we describe the issues involved 
and the basis for prioritization (i.e. how priority classes are 
specified and what they mean to the resource distribution).  
The primary contribution of this paper is the design and 
evaluation of several priority-based resource management policies 
for an effective QoS-aware cache/memory architecture. The 
proposed QoS policies differ in terms of prioritization goals (high 
priority targets and low priority constraints), the monitoring 
metrics used (resource vs. performance-based) and the nature of 
resource assignment (static vs. dynamic). We evaluate the QoS-
aware architecture and policies in the context of virtualization- 
based consolidation usage models, heterogeneous CMP 
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Figure 1. Disparate Threads of Execution on CMP Platforms 

architectures and traditional multi-tasking environments. Our 
evaluation framework is based on detailed trace-driven 
simulations as well as a prototype QoS-aware version of Linux. 

We show that the proposed QoS-aware memory architecture can 
improve the performance of the high priority application 
significantly in the presence of other applications. We also show 
that dynamic policies are important since they allow the hardware 
to guide the resource allocation based on actual performance 
changes as well as constraints. 

The rest of this paper is organized as follows. The case for QoS 
and related work are presented in Section 2 and 3. Section 4 
covers the QoS design space (goals, targets and considerations). 
Section 5 introduces QoS policies and the QoS-aware 
architecture. Section 6 presents the evaluation framework and 
analyzes effectiveness of proposed QoS policies. Section 7 
summarizes findings and presents a direction for future work. 

2. A CASE FOR QOS IN CMP PLATFORMS 
In this section, we motivate QoS needs by describing disparate 
threads and the shared resource problem. 

2.1 Disparate Threads of Execution 
As shown in Figure 1, the key trends that point to disparate CMP 
threads of execution are as follows: 
(a) Multi-tasking becomes more common: As more 
threads/cores are enabled on die, the compute capability is best 
utilized by multiple simultaneously executing tasks or 
applications (see Figure 1a). The behavior and platform resource 
usage of these simultaneous threads of execution can be quite 
disparate (e.g. cache-friendly versus streaming). It is also possible 
that one application is of more importance than another (e.g. 
business-critical application executing with network backup). 
(b) Virtualized workloads becoming mainstream: While the 
concept of virtualization [6] has been around for a while, the 
recent re-emergence of virtualization as a means to consolidate 
workloads in the datacenter reflects the need to pay attention to 
the performance behavior of virtual machines running 
heterogeneous workloads simultaneously on a server, as shown in 
Figure 1b. This becomes even more important as virtualization-
based usage models continue to rapidly evolve and encompasses 
office workstations/desktops and even home PCs/laptops. In these 
scenarios, many disparate workloads are consolidated together 
and performance isolation [4] is desired for the high priority 
applications that can be identified by user or administrator. 

(c) Heterogeneous CMP architectures are attractive: In 
addition to diverse workloads, we are also at a point in the CMP 
evolution where not only heterogeneous cores [13] but also co-
processors and engines (e.g. TCP offload, graphics, crypto) are 
being explored for integration on the die. These diverse “threads” 
of execution (as illustrated in Figure 1c) are known to have 
different behavior as compared to typical applications running on 
the general-purpose cores on the die. Depending on the workload, 
it is also possible that either the general purpose application or the 
special-purpose function is more important to optimize. 

2.2 The Shared Resource Problem 
Cache and memory are two key platform resources that affect 
application performance. While memory has always been shared 
in multiprocessor platforms, the emergence of CMP architectures 
now makes cache (typically the last level in the hierarchy) also a 
shared resource amongst the threads on the die. In addition to 
cache and memory, other resources that are shared include 
interconnects (on-die and off-die) as well as I/O devices. While 
we expect that all shared resources will require priority-based 
management in the platform, we focus in this paper primarily on 
cache and secondarily on memory. The resource characteristics 
that need to be provisioned for QoS differ significantly between 
cache and memory as considered in this paper. For cache, it is the 
space shared by disparate threads, whereas for memory, it is the 
bandwidth that is shared between disparate threads running 
simultaneously.  

Figure 2 illustrates the motivation for QoS in this context. The 
figures show the resource and performance implications of a high 
priority application running in standalone (dedicated) mode 
versus when it is running in shared mode with other low priority 
applications. We chose an OLTP trace (TPC-C like) to represent a 
high priority application and a Java workload trace 
(SPECjbb2005 like) and a networking workload trace (NTttcp) to 
represent the low priority applications. We ran the high priority 
application in isolation (dedicated mode) and along with the low 
priority applications (shared mode). The study showed how 
sharing cache affects the performance of the high priority 
application (OLTP). The cache performance of the high priority 
application reduced significantly (~1.7X increase in MPI) since 
the cache space available to this application was only 35%. In 
order to minimize the loss of performance (~20%), the priority of 
the application needs to be comprehended by the platform in 
order to re-allocate cache resources. In this paper, we investigate 
QoS policies and mechanisms to manage the cache (and memory) 
resource distribution between high and low priority applications. 
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Figure 2. Disparate Threads and Shared Resources: Illustrating the need for QoS 

3. RELATED WORK 
Previous research on partitioning for cache/memory architectures 
can be found in [5][9][10][17][19][19][33] The primary 
optimization goal for the techniques presented in most of these 
papers has been either fairness [10][17][33] or improving overall 
throughput [19]. For example, Kim et al. [10] proposed a fair 
policy that attempts to equalize the cache resources provided to 
each of the individual applications or provide unequal cache 
resources to ensure equal performance degradation for each of the 
applications. However, their dynamic algorithm requires an 
offline profile for each thread’s execution. Yeh et al. [33] presents 
a dynamic scheme which is based on on-line statistics and re-
configures the cache partitioning accordingly. To provide fairness 
as well as QoS on available memory bandwidth across threads, 
Nesbit et al. [17] proposed a memory scheduler by adapting fair 
queuing techniques from network research. To improve overall 
performance through unequal distribution of cache resources, 
Qureshi et al [19] presents a low overhead online mechanism to 
keep track of cache utility for each thread and direct cache space 
distribution. 

Although QoS has been studied for a long time in real-time 
environments [24], networking [35] and multimedia [15], it has 
only been recently introduced to the CMP architecture[9]. Iyer [9] 
described the need for a priority-based framework to introduce 
QoS in CMP caches. However, the paper did not present a 
detailed description of policies, metrics or complete architectural 
support.  In this paper, we present a complete proposal with 
optimization goals, policies and metrics as well as hardware 
support in the CMP platform. 

4. QOS GOALS AND CONSIDERATIONS 
In order to design appropriate QoS policies and mechanisms it is 
important that the goals, metrics and constraints are considered 
and incorporated.  

4.1 QoS Philosophy & Goals 
The first step is to ensure that the goal of the QoS policy is well 
defined. Hsu et al. [5] describe various optimizations goals and 
policies for cache sharing in a CMP platform. Three types of 
policies are described – capitalistic, communist and utilitarian. 
The capitalist policy is essentially the baseline LRU-based cache 
implemented in most processors today. This policy allows each 

individual thread to grab cache space based on the frequency of 
the access. As a result, the faster it generates memory accesses, 
the more allocation it is able to accomplish. The utilitarian policy 
attempts to improve the overall throughput (the greater good) of 
the platform by maximizing resources for the cache-friendly 
application and minimizing resources for the cache-unfriendly 
application. Finally, the communist policy attempts to equalize 
the cache resource or performance available to each of the 
individual applications.  

In this paper, our basic philosophy is different in that it considers 
the relative priority of the applications running simultaneously 
and ensures that a high priority application is provided more 
platform resources than the low priority applications. As a result, 
we propose a new policy that could be called “elitist”, as it caters 
to the elite application(s) at the possible expense of the non-elite 
classes of applications. Elitist policies have several key 
considerations and requirements: (a) the classification of 
applications into elite vs. non-elite, (b) the nature of the QoS that 
an elite application should be provided and (c) the extent to which 
non-elite applications is allowed to suffer. In following 
subsections, we will further discuss considerations and propose 
solutions that address them. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Metrics for QoS Policies (E.g. Cache) 
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others. To specify and/or measure the efficacy of a QoS policy, 
we propose three types of metrics (see Figure 3): 
• Resource Usage Metrics (RUM):  The underlying mechanism 
to improve the performance of the high priority application is the 
amount of resource it is provided. So RUM (e.g. cache space) 
could be used as a metric to measure both resource QoS as well as 
its contribution to overall QoS if multiple resources are involved. 
Specifying the usage needs for all of the platform resources also 
enables creation of a virtual platform architecture tailored to the 
application or virtual machine of interest. 
• Resource Performance Metrics (RPM):  Providing more 
resources (measured by RUM) does not always ensure that the 
application performance will improve. For example, there are 
applications that are streaming in nature where providing 
additional cache space does not help. As a result, it may be better 
to use resource performance (e.g. misses per instruction for the 
cache resource) as a metric as opposed to resource usage itself.  
• Overall Performance Metrics (OPM): The contribution of a 
certain resource and its performance to the overall platform 
performance depends highly on the platform as well as 
application characteristics. Ultimately, it is best to measure the 
overall performance (e.g. IPC). 

4.3 QoS Targets & Constraints  
To define an appropriate QoS policy and mechanism, it is 
important to understand the targets and the constraints. The target 
of the QoS policy is the extent to which the high priority 
application should be improved whereas the constraint ensures 
that the low priority application does not suffer beyond a certain 
point. In order to understand this further, let’s define the target 
first. Figure 4 describes the bounds on high-priority applications, 
low-priority applications and overall performance of the platform. 
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Figure 4. QoS Targets and Constraints 
 

As illustrated in Figure 4, the high priority application 
performance is essentially bounded by its performance in 
dedicated mode versus shared mode. The QoS target is to achieve 
somewhere in between. At one extreme, to achieve the dedicated 
mode performance, all resources have to be provided to the high 
priority application. At the other extreme, if shared mode 
performance is sufficiently close to dedicated mode performance, 
QoS may not be required. Another consideration is that the QoS 
target for the high performance application can be specified as 
either a distance from the dedicated mode execution or a distance 
from the shared mode execution. Online monitors or offline 
profiling may be required to measure these bounds and provide 
guidance on setting targets. 

While attempting to achieve high performance for the high 
priority application, it may be important to control the 
degradation of the low priority applications or the overall 
performance of the platform.  As shown in Figure 4, the QoS 
constraint is this degradation threshold that is allowable in the 
platform.  It would be ideal if the low priority is less affected if 
fewer resources are provided to it, but that may not always be the 
case.  If the QoS target and QoS constraint are set independently, 
we expect that only best effort QoS can be supported by the 
platform. If hard guarantees are required on the resource itself, the 
choices that need to be made may be quite different. In this paper, 
we focus on best effort QoS and show how best we can provide 
resource and performance benefit for high priority applications 
while meeting the constraints. 

5. QOS POLICIES AND ARCHITECTURE 
In this section, we outline proposed QoS policies based on 
specific goals, metrics, targets and constraints.  We also present a 
QoS-aware memory architecture that forms the underlying 
infrastructure to implement these policies. 

5.1 Proposed QoS Policies  
The proposed QoS policies differ based on whether they require 
static or dynamic resource allocation, whether they consider 
targets or constraints, and the metric on which they are based. 
While the QoS policies can be defined for any number of 
applications and priority levels, we discuss the policies in the 
context of one high-priority level and one low-priority level.  The 
two primary policies (static vs. dynamic) and associated sub-
policies are described in the subsections below. 

5.1.1 Static QoS Policies 

We define a policy as static if the hardware mechanism required 
for it does not need to perform dynamic resource assignment. In 
other words, static policies are defined such that the specified 
target and constraint do not require continuous adjustment of 
resources. As a result, a static policy specifies the QoS target 
and/or constraint in terms of the resource usage metric (RUM; e.g. 
cache space) provided to the high priority application and low 
priority applications respectively. It should be noted that while the 
hardware policy is static, the software policy can choose to 
dynamically modify the prioritization. 

For the cache resource, we need to be able to specify the cache 
space allowable for each priority level and ensure that the priority 
level does not exceed this threshold during execution. It is also 
important that cache and memory QoS work cooperatively. If a 
low priority application is constrained in cache space, it will start 
to occupy more memory bandwidth and thereby affect the high 
priority applications and potentially cause priority inversion. The 
resource metric of interest for memory QoS is bandwidth. To 
control memory bandwidth allocation, we control the rate at 
which requests from different priority levels are allowed to be 
issued to the memory subsystem. Nesbit et al. [17] describe an 
interesting re-design of the memory controller to achieve the goal 
of bandwidth guarantees. To avoid significant re-design, we 
evaluate a simpler approach. Re-ordering of requests is a common 
optimization in the memory controller for improving memory 
efficiency and performance [16][22][36]. Based on this re-
ordering optimization, we control memory bandwidth by allowing 

28



requests from a high priority application to bypass requests from a 
low-priority application. The extent to which requests can be 
bypassed (e.g. 5 high priority requests before serving one low 
priority requests) indicates the ratio of bandwidth (e.g. 5:1) that is 
provided to the incoming priority levels. It should be noted that 
we take this approach because (a) we are more interested in 
bandwidth differentiation rather than bandwidth guarantees and 
(b) it is very simple to implement.  

5.1.2 Dynamic QoS Policies 

Dynamic QoS requires resources to be continuously re-allocated 
based on the resultant performance and the targets/constraints. In 
this paper, we evaluate the ability to do this dynamic re-allocation 
in hardware. However, it should be noted that it is possible to 
accomplish the re-allocation in software as well if all of the 
monitoring feedback is provided to the execution environment 
(OS or VMM). The targets and constraints can be specified in 
terms of resource performance (Dynamic QoS RPM) or overall 
performance (Dynamic QoS OPM). Also, depending on whether 
the constraints are used at all or how they are specified, the sub-
policies can be further sub-categorized into (a) Target – where a 
target is specified for the high priority application and the 
constraint is ignored, (b) LoPriConstraint – where instead of a 
high-priority target, a constraint is specified that the low-priority 
application should not degrade below a certain resource or overall 
performance level, and (c) OverallConstraint – where instead of a 
high priority target being specified,  a constraint that the (resource 
or overall) performance of the overall platform should not drop 
below a certain threshold is specified. In these policies, the 
amount of resource as well as the resultant performance provided 
to a high priority application or a low priority application need to 
be monitored at regular intervals in the platform. If the 
performance of the high priority application is lower than the 
target or the degradation threshold for the low priority application 
or for overall platform is not crossed, then the amount of 
resources assigned to the high priority application is increased by 
a pre-specified amount. The architecture and implementation for 
such QoS policies are discussed below.  

5.2 A QoS-Aware Memory Architecture 
In this subsection, we present a layered QoS architecture that 
implements static and dynamic cache resource assignment for the 
QoS policies. Our proposed QoS-aware memory architecture 
consists of three primary layers: priority enforcement, priority 
assignment and priority classification. For simplicity, we first 
assume that there is only one high priority thread and one low 
priority thread. We later describe extensions to the architecture 
for more priority levels and more applications. Figure 5 shows the 
three layers and the hardware support for each layer. 

5.2.1 Priority Classification 

The priority classification layer is responsible for identifying and 
providing the QoS information: the priority levels of each 
application (0 for high and 1 for low) and the associated 
targets/constraints. We expect that the metric of choice (RUM vs. 
RPM vs. OPM) is ultimately standardized and exposed to the user 
in a consistent manner. As shown in Figure 5, this layer requires 
support in the execution environment (either OS or hypervisor) as 
well as the processor architecture. Operationally, support (in the 

form of a QoS API) is required for the user or administrator to 
supply the required QoS information to 
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Figure 5. QoS Architecture Layers and Components 
 
the execution environment. The support in the execution 
environment is the ability to maintain the QoS information in the 
thread state and the ability to save and restore it in the processor’s 
architectural state when the thread is scheduled to run. The 
support in the processor is essentially a new control register called 
Platform QoS Register (PQR) in order to maintain the QoS 
information (in the architectural state) for the runtime. The 
execution environment sets the PQR with the platform priority 
level of the currently running application at schedule time. In 
addition, this register will also be used to convey the mapping of 
priority levels into resource thresholds (for static QoS) and the 
mapping of priority levels to targets/constraints (in case of 
dynamic QoS).  
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Figure 6. QoS Information Encoding in PQR 

5.2.2 Priority Monitoring & Assignment 

Figure 5 also illustrates the components of priority assignment 
layer in the QoS-aware memory architecture. Figure 6 shows a 
potential encoding of QoS information that needs to be passed 
down from the execution environment to the platform. The first 
field indicates the priority level of the executing thread. This 
information is written into the PQR every time a new thread is 
scheduled on to the processor. The second field is used for static 
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QoS and indicates the thresholds for each resource type (cache, 
memory, etc) for each priority level. For example, it specifies the 
space threshold for cache and the bandwidth threshold for 
memory in discrete quantities or as ratios respectively. This 
information is only provided when the execution environment 
initializes or needs to modify the resource thresholds for the 
priority levels supported by the platform. Whenever this field is 
updated in the PQR, the information is passed to the QoS 
Resource Table (QRT) which will be described later. For dynamic 
QoS, the third field is used to specify the target and/or constraint 
for the priority level. It is desirable to specify the target/constraint 
in terms of a multiplier to the actual performance (RPM or OPM). 
For example, if the target is specified as 1.2, then the goal is to 
achieve 20% more performance (IPC) when using OPM as the 
metric. In the PQR, one bit is used to indicate target vs. 
constraint, a few bits are used to indicate which performance 
metric (RPM vs. OPM, cache vs. memory, etc) and then a subset 
of the multiplier values are encoded in the remaining bits. 
Whenever the PQR is written, these resource and performance 
targets are passed down to the QoS Resource Table and the QoS 
Enforcement module if necessary.  Once the mapping of priority 
level to resource or performance targets are established, the next 
step is to ensure that every memory access is tagged with the 
priority level. By tagging each memory access with the associated 
priority level (from the PQR), monitoring and enforcement of 
resource usage is made possible locally within each subsystem 
(cache, memory, etc). This is described in more detail in the next 
section. 

5.2.3 Priority Enforcement 

Figure 5 illustrates the priority enforcement layer in the 
architecture and shows the components involved. The inputs to 
the enforcement layer are the tagged memory accesses and the 
QoS resource table. As shown in Figure 7, each line in the cache 
is tagged with the priority level in order to keep track of the 
current cache space utilization per priority level. The QoS 
resource table uses this information to store the cache utilization 
per priority level. This is done simply by incrementing the 
resource usage when a new line is allocated into the cache and 
decrementing the resource usage when a replacement or eviction 
occurs. The QoS resource table also maintains the number of 
memory accesses (cache misses and writebacks). By doing so, it 
can also keep track of the bandwidth consumption in memory. 
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Figure 7. QoS-Enabled Cache Enforcement 

 

For priority enforcement, there are two more functions that are 
critical: (a) Static QoS: to make sure the resource utilization stays 
within the static QoS threshold specified in the QoS Resource 
Table and (b) Dynamic QoS: to dynamically adjust the threshold 
to satisfy the performance target/constraint specified. The static 

QoS policy is achieved by modifying the replacement policy to be 
QoS aware. For each priority level, the utilization and the static 
QoS thresholds are available (in the QRT) on a per priority basis. 
If the utilization is lower than the specified threshold, then the 
replacement policy works in normal mode using the base policy 
(like LRU). When the utilization reaches the static QoS threshold, 
the replacement policy overrides the LRU policy to ensure that it 
finds a victim within the same priority level. In some corner 
cases, it is possible that the set does not contain a line from the 
same priority level even though the utilization threshold has been 
reached. In these cases, a victim is chosen from a lower priority 
level or at random if none is available. Similar cache partitioning 
mechanisms have been presented before [9][19][27][28].  
 

 

At each interval, perform the following check: 
Target-Only: If (perfhi < targethi) {reduce lo threshold; increase hi threshold} 
Lo-Constraint: If (perflo > targetlo) {reduce lo threshold; increase hi threshold} 
Overall-Constraint: If (perfovl > targetovl) {reduce lo threshold; increase hi threshold} 
All-of-the-Above: Else {restore previous interval thresholds} 

 
 

 
Figure 8. Basic 2-Priority Dynamic QoS Heuristic 

 

To enforce dynamic QoS policy, the QoS Enforcement Module 
(QEM shown in Figure 5) monitors the performance (cache 
misses as well as cycles per instruction) at frequent intervals. A 
basic description of a dynamic QoS heuristic (for 2 priority 
levels) is shown in Figure 8. As long as the target is not achieved 
or the constraint is not violated (as specified by the dynamic QoS 
policy described in section 5.1.2), the QEM modifies the resource 
thresholds by reducing it for low priority and increasing it for 
high priority. The granularity at which the resource threshold 
increases/decreases is a parameter that is pre-specified (e.g. 10% 
of cache size). The QEM can also address underutilization issues 
by modifying resource thresholds. In the memory subsystem, 
similarly, the QEM can decide to change the bandwidth ratio (e.g. 
from 3:2 to 4:1). If the target is reached, then no changes are 
made to the thresholds subsequently. If the constraint is violated, 
the setting for the previous interval is restored. For implementing 
this, the QoS resource table is extended to maintain current and 
past resource utilization and thresholds, resource performance and 
overall performance. Since the table is small (< 1KB), the 
overhead of maintaining this information is negligible. 

To extend the dynamic QoS heuristic for multiple priority levels, 
additional parameters are needed: (a) separation level and (b) split 
ratio. The separation level indicates that all priority levels below 
it will have resources reduced and the ones above it will be 
provided those resources. The split ratio indicates how these 
resources will be stolen and distributed amongst the priority 
levels. In the evaluation section, we will show an example with 
three priorities (where the separation is set to the lowest priority 
level and the split ratio is varied). 

6. QOS EVALUATION & PROTOTYPING 
In this section, we present two approaches (trace-driven 
simulation & software prototyping) to evaluate QoS.  

6.1 Simulation-Based Evaluation 
In this subsection, we describe the trace-driven simulations for 
evaluating QoS policies and architecture. 
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6.1.1 Simulation Framework 

We developed a trace-driven platform simulator called ManySim 
[34] to evaluate CMP architectures and QoS policies. ManySim 
simulates the platform resources with high accuracy, but abstracts 
the core to optimize for speed. The core is represented by a 
sequence of compute events (collected from a cycle-accurate core 
simulator) separated by memory accesses that are injected into the 
platform model. ManySim contains a detailed cache hierarchy 
model, a detailed coherence protocol implementation, an on-die 
interconnect model and a memory model that simulates the 
maximum sustainable bandwidth specified in the configuration. 
The CMP architecture (a somewhat scaled down version of a 
Niagara-like [11][14] architecture) used for evaluation is shown in 
Figure 9. There are two cores, with each one having four threads 
and its own private L1 and L2. Both cores share the last level 
cache (L3) where the QoS policies are enforced. When we run 
multi-threaded applications with two priority levels, each core is 
running a different application (the first four threads run the high 
priority application whereas the second four threads run the low 
priority application). When we run three applications with three 
different priority levels, the high, mid and low priority 
applications are running on the first three threads, the next three 
and the last two threads respectively. 
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Figure 9. Evaluated CMP Environment 

 

Table 1 summarizes the simulation configurations. As shown in 
the table, we model CMP architecture with a 3-level cache 
hierarchy and simple in-order cores. In our simulation, the 8 
threads share a 1MB last-level cache. The available memory 
bandwidth is set to be 8 GB/s. For QoS evaluation, ManySim was 
modified to allow cores and traces to be tagged with priorities. 
The priorities were then provided to the cache/memory 
subsystem. The QoS hardware components (QRT, QEM, QoS-
aware replacement, etc) were implemented in ManySim. The 
specific cache QoS policies evaluated using Manysim are: 

• Static QoS 
• Dynamic QoS + MPI_Target 
• Dynamic QoS + Overall_MPI_Constraint 
• Dynamic QoS + LoPriority_MPI_Constraint 
• Dynamic QoS + IPC_Target 
• Dynamic QoS + Overall_IPC_Constraint 
• Dynamic QoS + LoPriority_IPC_Constraint 
 
We also evaluate memory QoS for the base architecture with and 
without cache QoS. The specific QoS parameters used are 
described along with the results. In all cases, we model cache and 
memory contention effects accurately. 

Table 1. ManySim Simulation parameters 

Parameters Values 
Core 4GHz, In-order, 4 threads 

L1 I/D cache 32 Kbytes, 4-way, 64-byte block 

L2 cache 128K bytes, 8-way, 64-byte block 

L2 cache hit time 10 cycles 

MSHR size 16 

L3 cache 1M bytes, 16-way, 64-byte block 

L3 cache hit time 50 cycles 

Interconnect bandwidth 128GB/s 

Memory access time 400 cycles 

Memory bandwidth  8GB/s 

Queues and Other 
Structures 

Memory Queue (16) L3 MSHR (16) 

Coherence Controller Queue (16) 

Interconnect Interface (8 entries) 
 

6.1.2 Workloads & Traces 

We chose a few commercial multi-threaded server workloads 
(OLTP, SPECjbb) and a networking workload (NTttcp). Running 
these simultaneously allows us to experiment with virtualization-
based consolidation usage models (two or three workloads 
running simultaneously) as well as heterogeneous CMP 
architectures (when one of the workloads is NTttcp) described 
earlier in Section 2.1.  

OLTP:  For representing OLTP, we used traces from multi-
threaded TPC-C-like workload [30], which is an online-
transaction processing benchmark that simulates a a warehouse 
environment where a user population executes transactions 
against a database.  The benchmark is based on order-entry 
transactions (new order, payment, etc).   
Java: SPECjbb2005 [26] is a Java-based multi-threaded server 
benchmark that models a warehouse company with warehouses 
that serve a number of districts (much like TPC-C). This 
workload stresses the performance of JVM internals (garbage 
collection, runtime optimization, etc). 
NTttcp: NTttcp is commonly used to test network I/O (packet 
processing for transmit/receive) and contains a lot of 
transient/streaming data as a result. This is a Windows version for 
ttcp [29] micro-benchmark.  

6.1.3 Evaluating Static QoS Impact 

The static QoS policy essentially allows more cache (space) and 
memory (bandwidth) resources to be assigned to the high priority 
application. For cache, we do so by limiting the amount of space 
in the cache that the low priority application can allocate. As a 
result, our evaluation of the static QoS policy is done by varying 
this cache space limit for low priority applications from 0% to 
40% of the cache size. We compare this to the shared mode 
execution without QoS which is denoted by a cache space limit of 
100%. We use the two RPM/OPM primary metrics to evaluate 
effectiveness: resource performance denoted by MPI (misses per 
instruction) and overall performance denoted by IPC (Instructions 
per Cycle).  
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Figure 10 shows the impact of the QoS policy when executing 
TPCC with SPECjbb and TPCC and NTttcp. The two y-axes 
illustrate the MPI (bars) and IPC (lines) respectively, normalized 
to the case where both workloads share the cache without any 
prioritization. We find that as we reduce the cache space available 
for SPECjbb (in Figure 10a), the MPI for TPCC is decreased. 
When SPECjbb can only take up to 10% of the total cache size, 
the MPI for TPCC is reduced by about 25%, and as a result the 
IPC for TPCC is increased by 11.4%. On the other hand, as 
expected, the MPI for SPECjbb is increasing and its IPC is 
reduced. One of the important findings from this study is that 
since the low priority application gets affected, it is important to 
enforce constraints on how degraded its performance can get.   
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(b) TPCC (hi) + NTttcp (lo) 

Figure 10. Impact of Cache QoS (Static Policy) 

We next evaluate the impact of QoS policies for memory 
bandwidth prioritization when running TPCC and NTttcp (TPCC 
having higher priority). Note that although we have the results of 
all the combinations for different workloads, we pick one of them 
for brevity. It should also be noted that we simulated a 
bandwidth-constrained environment to study memory QoS to 
mimic pin constraints on future generations of large-scale CMP 
platforms. For memory bandwidth, the resource is controlled by 
allowing multiple high priority requests in the queue to be 
serviced before a pending low priority request. The number of 
requests that are serviced for high priority before a low priority 
request is labeled as the priority degree (same as bandwidth ratio). 
The base case is where the memory requests are serviced in order 
of arrival.  
Figure 11 shows the impact of the static memory QoS policy on 
the IPC of the high priority application (in (a)) and the low 
priority application (in (b)). In the figure, we show three curves 
denoted by 100% (shared mode execution without cache QoS), 

30% (shared mode execution with 30% cache space limit on low 
priority application) and 0% (shared mode execution with low 
priority applications bypassing the last-level cache). It should be 
noted that there are two “opposite” memory effects occurring as 
more cache space is provided to the high priority application: (a) 
fewer high priority misses go to the memory subsystem and as a 
result, the dependency on memory bandwidth is lower, and (b) 
more low priority misses go to the memory subsystem and as a 
result, it occupies more of the memory bandwidth. 
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(b) NTttcp (low priority) Performance 

Figure 11. Memory QoS Impact 
As shown in Figure 11 (a), even a small increase in priority 
degree (value of 1) improves the IPC of TPCC (high priority 
workload) by as much as 21%. As we increase the priority degree 
further, the IPC increases more slowly and remains constant once 
the priority degree reaches 3. When QoS policy is enforced on 
cache, the IPC is increased by another 20% (NTttcp-30% case) 
and 16% (NTttcp-0% case) respectively except for the base case. 
As shown in Figure 11(b), the IPC for low priority workload 
(NTttcp) is reduced. However the reduction in low priority 
performance is not as much as the increase for the high priority 
application. When priority degree is 1, the IPC is reduced by 
10%. Similar behavior can be seen for other two curves. Another 
notable behavior is that when NTttcp is fully bypassing the cache 
(0%), the bandwidth priority does not have much impact. This 
occurs partially because TPC-C has more space in cache and is 
less sensitive to changes in memory latency. 

6.1.4 Evaluating Dynamic QoS Impact 

For dynamic QoS, we only present the impact of the policy on 
cache for lack of space. The dynamic policies evaluated differ in 
target/constraint metric (RPM vs. OPM) as well as the type of 
target or constraint used. Table 2 shows the parameters used for 
the six resultant policies. These policies are compared to the base 
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case where all the workloads have the same priorities. For two 
priority levels, we only show the results for TPC-C running with 
NTttcp for brevity. Figure 12 shows the implications of using 
dynamic QoS based on MPI as the RPM metric. The x-axis shows 
execution timeline broken into intervals of 300K references.  

Table 2: Dynamic QoS Parameters 

Policy RPM (MPI multiplier)  OPM (IPC multiplier) 

Target 0.8x (high priority) 1.2x (high priority) 
Overall 
Constraint 

1.1x (overall) 0.9x (overall) 

Low-Pri 
Constraint 

1.2x (low priority) 0.8x (low priority) 

 

During a given interval, the resource allocation is constant. At the 
end of each interval, the QoS enforcement module re-evaluates 
the performance based on targets/constraints and re-allocates the 
cache space as appropriate. The two y-axes show the cache space 
utilized (bars) by each application and the normalized MPI 
(lines). Figure 12a shows the execution when no QoS is 
performed. The workloads exhibit a relatively steady cumulative 
MPI and cache space utilization with NTttcp occupying almost 
60% of the cache space and TPC-C occupying 40%. Figure 12b 
shows the impact of target-only QoS, where a target of 0.8x MPI 
is achieved for the TPC-C workload without considering the 
effect on the NTttcp workload. The graph shows that cache 
allocation changes occurred during the run (as seen in the bars) 
whenever the MPI in a given interval is lower than the target. 
Figure 12c shows the effect of the applying overall MPI 
constraints on the performance. Since the overall MPI does not 
increase beyond the 1.1x constraint, we do not see significant 
amount of dynamic cache space re-allocation. Instead we find that 
the high priority application is constantly given additional 
resources (almost all of the cache) and benefits from a MPI 
reduction of more than 30%. Finally, Figure 12d shows the 
implications of applying a low priority constraint of not 
exceeding 1.2x MPI. As shown, the cache space is re-allocated a 
few times to ensure that this constraint is not violated. At the 
same time, the cache performance of the high priority application 
is improved significantly (MPI reduction of 20%). Although not 
shown due to space limitation, our experiments on IPC-based QoS 
show similar behavior and confirm that using IPC can be 
reasonable especially if only one resource is affecting overall 
performance.  
We also look at the QoS impact on all three applications running 
simultaneously, with TPCC having the highest priority, SPECjbb 
having the mid-level priority and NTttcp having the lowest 
priority. Figure 13 shows the data for the dynamic QoS policy 
with the following overall constraint: as long as the overall MPI 
does not increase by 2%, we steal resources from low priority 
applications and allocate those to mid and high priority 
applications. To do so, the first step is to reduce the cache space 
threshold for low priority application by a pre-determined amount 
(20% in this case). This freed up space is then made available to 
both high and mid-level priority applications. In order to ensure 
that the high priority is given more of this space than mid priority, 
we define a split ratio. The split ratio indicates the percentage of 
the freed up space provided to the mid-level priority application. 
For example, if the split ratio is 20%, then 20% of the space is 
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(a) No Cache QoS 
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(b) Cache QoS with Target-Only 
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(c) Cache QoS with Overall Constraint 
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(d) Cache QoS with Low Priority Constraint 

Figure 12: Dynamic QoS using RPM 
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given to mid-priority and 80% is given to high priority. In Figure 
13, we show the base case (no QoS) and three dynamic QoS 
cases, where we vary the split ratio. We can see that with the QoS 
policy, the cache space for TPCC is increased significantly, and 
as a result, its MPI is reduced about 20%. As expected, this is at 
the cost of NTttcp, whose MPI is increased by 25%. For the mid-
level priority application, SPECjbb, its space consumption 
increases by only a small amount when the split ratio is 20% and 
35%, and therefore the MPI does not change. However, when the 
split ratio is increased to 50%, its space consumption increases 
significantly, and its MPI reduces by 6%. In any case, the split 
ratio indicates a trade-off of space allocation between the high 
and mid-level priority applications. 
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Figure 13. Dynamic QoS (RPM) on 3 priority levels 

6.2 QoS Prototyping 
To evaluate our QoS-aware architecture more realistically, we 
developed a software prototype and ran a limited set of 
experiments on a full system simulator. In this section, we 
describe this effort and our initial findings.  

6.2.1 QoS-Aware Operating System 

Our software prototype is a QoS-aware Linux operating system. 
This was accomplished by modifying the 2.6.16 Linux kernel to 
provide the following QoS support: 
(a) QoS bits in process state:  QoS bits that indicate the priority 
level and associated information were added to each process’ 
state.  This information is saved/restored during context switches. 
(b) QoS register emulation: The Linux scheduler was modified 
to emulate saving and restoring the QoS bits from the process 
state to processor architecture state (Platform QoS Register) and 
vice-versa. This was achieved by employing a special I/O 
instruction during every processor context switch.  More 
specifically, we first read the QoS bits value from the process 
context that was switched in. Then we issued an out (x86 ISA) 
instruction that sent this value to an unused I/O port 0x200 
(typically, this port was reserved for joystick). This instruction 
was used to communicate the process’ QoS value to the hardware. 
Port 0x200 was registered as the “QoS” port in the kernel I/O 
resource registration module to guarantee that it wouldn’t be used 
by other I/O devices. 

In addition, to allow administrators to pass QoS values for 
running processes, the Linux kernel was modified: 
(a) QoS APIs for user/administrator: Two extra system calls 
were added to the kernel to provide access to QoS bits which 
were stored in kernel address space. 

(b) QoS utility program: This tool was implemented in the host 
Linux machine to query and modify the QoS value of the running 
applications. 

6.2.2 Full-System Simulation 

In order to evaluate the QoS-aware Linux OS on a QoS-aware 
architecture, we employed SoftSDV [32], a full-system simulator 
that allows us to model the architecture functionally and enables a 
performance model. We use the functional model of SoftSDV to 
boot the Fedora Core 5 Linux, including our QoS-enabled kernel. 
The functional model passes instructions executed by the 
applications running to the performance model. These instructions 
include the out instruction, which triggers the performance model 
to record the priority values into the architectural state. For the 
performance evaluation, we integrated a cache simulator [8] into 
SoftSDV.  The cache simulator was modified to support static and 
dynamic cache QoS. 

6.2.3 QoS Evaluation 

We first look at a dual-core CMP with a shared last-level cache. 
This cache is an 8-way 256KB cache and is scaled down from 1M 
since the number of threads is reduced by a factor of 4 compared 
to the configuration used in the previous subsection. We choose 
two single-threaded applications from SPECint2000 benchmark 
suite [25] -- ammp and gcc, which show large cache sharing 
impact when they are co-scheduled. The standard ref is used as 
the input set. During the execution of these two benchmarks, we 
collect cache sharing statistics for about 100M instructions (after 
sufficient warmup). 
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Figure 14: Impact of static QoS in two-core CMP 

 

Figure 14 shows the static QoS evaluation results from our QoS 
prototype experiment when running gcc (high priority) and ammp 
(low priority) simultaneously. The two Y-axes represent the MPI 
(lines) and average cache space occupancy (bars) of the two 
applications respectively. The MPI value is normalized to the case 
when both applications share the L2 cache without any 
prioritization.  As seen from the figure, the MPI of gcc reduces 
when we reduce the cache space available for ammp. This is 
accompanied by an increase in the MPI of ammp. The MPI 
reduction for gcc is about 57% when ammp was constrained to 
occupy 10% of total cache size. Note that although we limit the 
cache space for low priority application, this limitation is not a 
hard bound and applications can sometimes exceed the specified 
limits. This can be because sharing of data by applications, 
(shared libraries etc) results in processes sometimes accessing 
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data tagged with the priorities of other processes. In our 
implementation, cache lines are tagged with the priority of the last 
application that touches the data.  
Next, we look at a four-core CMP platform, where we run one 
high priority application, two mid level priority applications and 
one low priority application which share a 1MB last level cache. 
It should be noted that we did not evaluate both mid-level priority 
applications contending within the same priority level. Instead we 
had two mid-priority levels with identical cache space thresholds 
(similar to having one middle-level priority with fair allocation 
within the priority level). For this scenario, each mid-priority 
application is limited to occupy 10% of total cache space and the 
low priority application will bypass the L2 cache (i.e. 0%) and 
essentially only use L1 cache. Figure 15 shows the impact of QoS 
when applu (high priority), art (mid level priority), gcc (mid level 
priority) and mcf (low priority) are co-scheduled. The MPI value 
of each application is normalized to the case when it shares the 
cache with other applications without prioritization. We can see 
that when we limit the cache space of art, gcc and mcf, the MPI of 
applu (high priority) reduces by 33% and the MPI of art, gcc and 
mcf increase by 21%, 150% and 216% respectively. 
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Figure 15: Impact of Static QoS in 4-core CMP 
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Figure 16: Comparison of Several QoS schemes 

 

Figure 16 compares the MPI running gcc (high priority) and 
ammp (low priority) simultaneously as follows: shared mode 
(without prioritization), half-half mode (each application gets 
50% of cache), static QoS mode (ammp is constrained to occupy 
only 10% of cache) and dynamic QoS (amount of cache is 
dynamically modified to improve high priority).  The MPI value 
of each application is normalized to the case when it runs under 
shared mode.  We can see that both static and dynamic QoS 
schemes efficiently improve the performance of gcc (high 
priority) while adversely affecting ammp (low priority). 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented the need for QoS in CMP 
architectures. We showed that efficient management of resources 
such as cache and memory are required to cater to high and low 
priority threads running simultaneously.   

We described the philosophy and goals for investigating QoS 
policies by introducing resource-based and performance-based 
metrics. We presented the key considerations and metrics 
involved when defining QoS policies. The primary consideration 
in enabling QoS is to decide whether to enable it on a resource-
basis or a performance-basis. We proposed several policies (static 
and dynamic) for resource-based as well as performance-based 
QoS. We showed the implementation requirements for a QoS-
aware memory architecture for CMP platforms. 

Through a detailed simulation-based evaluation, we showed that 
the QoS policies on cache and memory can be quite effective in 
optimizing the performance of high priority applications in the 
presence of other low priority workloads. We showed that 
significant performance improvements (20 to 30% reduction in 
MPI and 10 to 20% improvement in performance) can be 
achieved by providing additional cache space or memory 
bandwidth to the high priority application. The policies allow 
significant flexibility in modifying the amount of benefit 
achievable for the workload scenarios of interest. We also showed 
that considerations such as side-effects on overall performance or 
low priority performance can be addressed by enabling dynamic 
policies and implementing QoS enforcement modules. Last but 
not least, we validated our QoS architecture by implementing a 
software prototype and running it on a QoS-aware full-system 
simulation. Preliminary results from the prototype also show 
promising benefits for multi-tasking scenarios. 

Future work in this area is as follows. We plan to investigate 
architectures and execution environments with many workloads 
running executing. In particular, we would like to apply the 
resource-based and performance-based approaches to virtual 
machine environments. We would also like to further experiment 
with our prototyping environment for application or VM 
scheduling implications. It is also important to evaluate dynamic 
software QoS approaches where the OS passes dynamic QoS 
hints to the platform. 
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