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     Abstract 
 
How to allow fast network processing unit (NPU) performance testing in supporting fast data path functions in a router 
is a challenging issue. It is more so in a router design phase when there are a vast number of design choices to be tested 
and the microcode for the fast data path functions is yet to be developed.  In this paper, based on the instruction-and-
latency-budget-based NPU analysis methodology, we put forward an approach to allow NPU throughput upper bounds 
at arbitrary number of threads to be estimated quickly (in a fraction of a second on a Pentium II PC). These 
performance bounds allow the performance of fast data path functions to NPU configuration mapping to be quickly 
tested solely based on the worst-case code path derivable from the pseudo code of the fast data path functions. Case 
studies based on the code samples available in the Intel IXP 1200 and 2400 Developer Workbenches are performed. 
The performance bounds are found to be within 17% of the cycle-accurate simulation results.  
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1. Introduction 
 
As the Internet applications proliferate, network processing units (NPUs) or network processors have been constantly 
pushed to their capacity limits in handling an ever growing list of data path functions in a router. It is challenging to 
program an NPU to enable rich router functions without compromising wire-speed forwarding performance. Even more 
so is during the router design phase when a router designer or NPU programmer is faced with a vast number of design 
choices in terms of data path function partitioning among multiple NPUs and data path function mapping to a desired 
NPU configuration. A misjudgment can lead to either re-designs at various design stages or poor packet forwarding 
performance. The traditional NPU performance analysis tools, e.g., cycle-accurate simulation tools, are unviable in 
helping reach a quick decision, especially in a router design phase when the microcode is yet to be developed.  Hence, a 
new approach which can help make such a decision quickly is much needed.      
 
To address the above issue, a widely adopted methodology in practice is to use both instruction budget and latency 
budget for NPU performance testing, as documented in [1] (we call it Instruction-LAtency-Budget-based methodology 
(ILAB)). ILAB aims to allow fast estimation of NPU performance when a given (worst-case) code path is mapped to a 
micro-engine (ME)1 pipeline stage. The idea behind this approach is to use instruction budget and latency budget, 
obtained in the worst-case (e.g., when minimum sized packets arrive back-to-back at wire-speed [1]), to test whether the 
wire-speed can be sustained for the ME pipeline stage.  Meeting these two budgets for all the ME pipeline stages 
ensures wire-speed forwarding performance. On the other hand, failing to meet any of these budgets at any ME pipeline 
stage guarantees that the wire-speed forwarding performance cannot be achieved.  ILAB captures the essence for the 
NPU performance analysis. However, it is challenging to estimate the total latency a packet spent in an ME pipeline 
stage for latency budget testing, simply because how long a packet will stay in an ME pipeline stage is a complicated 
function of the code path, the number of threads, and the thread scheduling algorithm.  
 
In this paper, a novel approach is proposed to allow quick estimation of the packet latency in an ME pipeline stage for 
the coarse-grain thread scheduling discipline and for any given code path and any given number of threads. This latency 
estimation further allows the NPU throughput upper bounds to be estimated, making ILAB a powerful means for fast 
NPU performance testing.       
       
A. Literature Background    
  

                                                 
1 Also known as processing element (PE) or nP core.  
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In line with the traditional approach for the performance analysis of a computer system, NPU modeling and simulation 
tools were developed, e.g., [2-8].  These tools aimed at faithfully emulating the NPU microscopic processes, and are 
useful for fine-tuning the NPU configuration for performance optimization. They are not designed to allow fast NPU 
performance testing.  For example, even for the most lightweight NPU simulator described by Xu and Peterson [6], it is 
reported that it takes 1 hour to simulate 1 second of hardware execution on a Pentium III 733 PC with 128 Mbytes 
memory, assuming the microcode is available as input to the simulator.  Apparently, it would be impractical to use these 
simulation tools to reach a quick decision on various design choices, especially in a router design phase when the 
microcode is yet to be developed.  Interesting analytical approaches are also developed for NPU performance analysis, 
e.g., [10-13]. However, these approaches are either not aimed at fast NPU performance testing (e.g., [10], [12]) or 
cannot be generally applied to code paths with multi-memory accesses (e.g., [11] [13]).      
 
Intel recently developed an architecture tool [9] which addresses the issue similar to the one addressed in this paper, i.e., 
to allow NPU performance to be tested at an early design stage when the microcode is yet to be developed. However, 
the architecture tool described in [9] did not explain the methodologies used in the design of the tool and it did not give 
any performance data either. Moreover, the tool is particularly designed for Intel IXP2xxx processors 
 
As aforementioned, ILAB is documented in [1]. However, due to the use of total memory access latency, rather than the 
total latency, for latency budget testing, the performance bound found in [1] is independent of the number of threads in 
use, which generally leads to overly optimistic estimation of the NPU performance, as we shall explain in details later.  
In this paper, we address this issue by developing a fast latency estimation algorithm that accounts for the threading 
effect and offers reasonably tight throughput bound for any given number of threads and coarse-grained thread 
scheduling discipline.   
 
The rest of the paper is organized as follows.  Section 2 gives an example to explain the concept of code path and how 
to identify potential worst-case code paths. Section 3 formally defines the notations and ILAB.  Section 4 presents an 
algorithm for calculating the total latency and throughput upper bounds. Section 5 tests the accuracy of the ILAB and 
the algorithm in bounding the NPU performance by comparing the bounds with the cycle-accurate simulation results.  
Finally, Section 6 concludes the paper and proposes future research work.    
 
2. Worst-Case Code Path 
 
In this section, an example is used to explain the code path concept and how a potential worst-case code path can be 
identified2.  A user may test multiple code paths one at a time if he/she cannot decide which one is the worst-case code 
path.    
 
Fig. 1 gives a typical but simplified fast data path flow diagram or graphical representation of the pseudo code for the 
fast data path functions to be processed in an NPU, including IP forwarding, label swapping for multiprotocol label 
switching (MPLS), and the IS-IS routing protocol processing.  Assume the entire flow diagram is mapped to a single 
ME. An incoming packet is in the form of an Ethernet frame. The NPU first inspects the EtherType subfield in the 
Ethernet header to identify the upper layer data format in the frame payload. There are four possible outcomes:  
 

a) It is an IS-IS routing protocol packet. In this case, the frame is sent to the control card without further 
processing;  

b) It is an IP packet. In this case, the IP forwarding is performed which may include firewall/policy filtering, 
Network Address Translation, DiffServ (i.e., Differentiated Services) traffic conditioning, IP forwarding table 
lookup or equivalently the longest prefix matching (LPM), TTL (i.e., Time-to-Live) update, checksum update, 
and so on. Then the layer 2 framing is performed on the packet which may include outgoing interface 
maximum transmission unit (MTU) check, packet fragmentation, address resolution protocol (ARP) table 
lookup, and the layer 2 header encapsulation.  

c) It is an MPLS encapsulated IP packet. In this case, the MPLS label swapping table lookup is performed. As a 
result, there are two possible outcomes, i.e., the packet needs to be label forwarded or IP forwarded 
downstream.  In the former case, the label is swapped and the layer 2 framing is performed on the labeled 
packet.  In the latter case, the label is popped off and the IP processing/forwarding in case (b) is performed.  

                                                 
2 Note that, as in [1], in this paper, we assume that the worst-case code path is already known so that the worst-case performance can 
be tested by loading an ME pipeline stage with packets carrying this worst-case code path. This section is not meant to offer a formal 
approach for the identification of the worst-case code path, which is out of the scope of this paper.    
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d) It is an unknown protocol. In this case, the frame is simply discarded.    
   

Note that for simplicity, Fig. 1 did not provide all possible branches involved. For example, for MPLS label swapping, 
if 3 labels are supported in the label stack, there can be 12 different cases corresponding to the combinations of popping 
off 1, 2, or 3 labels and pushing 0, 1, 2, or 3 labels in the label stack. Also the IP Forwarding and Layer 2 Framing 
blocks further involve multiple branches, which are easy to identify but not shown in Fig. 1.  Any unique path from the 
root to a leaf defines a code path. Note that when there is a loop, the loop should be unwrapped with different numbers 
of looping belong to different branches or code paths.    
 
In the above example, one can easily identify the potential worst-case code paths to be tested, i.e., the microcode 
implementation of the longest flow branch with the largest number of instructions and memory accesses as highlighted 
along the bold arrows in Fig. 1. This branch involves MPLS label swapping (e.g., popping off 3 labels and pushing 0 
label) and then IP forwarding and layer 2 framing, corresponding to the scenario when a packet emerges from an MPLS 
domain and is to be sent into an IP domain.   
 
From an ME’s point of view, the worst-case workload takes place when all the packets require the worst-case code path 
processing. In other words, any other mixtures of the code paths will generate a workload no worse than this worst-case 
workload.  For instance, the second longest code path, i.e., the one for IP forwarding in case (b), is just a subset of the 
worst-case code path.  A combination of this code path and the worst-case code path will create a workload better than 
the worst-case workload.   
 
3. ILAB: Definitions and Notations 
 
For the ease of discussion, we consider an NPU organization depicted in Fig. 2. There are MPL MEs working in parallel, 
handling packets from different interfaces/ports, respectively, with a maximum line rate of R bps each. Different MEs 
share a set of on-chip or off-chip resources, e.g., an external DRAM or an external look-aside coprocessor, collectively 
denoted as MEM. Each ME has MT threads. Each thread can be configured to handle a packet throughout the lifetime of 
the packet in the NPU. Each ME has a set of embedded resources shared by all MT threads, collectively represented by 
Mem. Each thread also has its own set of resources, collectively denoted as mem. Note that resources MEM, Mem, and 
mem only include those which will cause the stall of a thread if accessed by that thread and consequently a context 
switching.  In this paper, the access of any of these resources is collectively called an I/O event or equivalently an I/O 
access.   An example NPU organization, which bears the most resemblance to the one in Fig. 2, is the one for AMCC’s 
NP7120 NPU [14].  
 
Note that although the above NPU organization happens to coincide with a specific NPU architecture, all the results 
derived based on this organization applies to any NPU organizations. This is because the analysis concerns with 
individual MEs only. In other words, whether different MEs in an NPU are configured in pipeline, parallel, or a mixture 
of pipeline and parallel stages, the wire-speed performance is guaranteed if and only if each and every ME meets its 
own budgets, as also observed in [1]. The effects of all possible resource contentions among threads at various levels are 
generally captured in terms of mem, Mem, and MEM.   
 
The following terminologies are used throughout the rest of the paper:  
  
Code Path:  a unique sequence of instructions to be executed by an ME for a given packet   
Unloaded latency:  I/O access latency without contention or queuing delay 
Loaded latency:  I/O access latency with heavy contention or queuing delay  
Instruction Budget:  the maximum number of cycles or instructions (assume one instruction per cycle) an ME’s 
arithmetic logic unit (ALU) can spend on each packet without compromising the throughput performance under the 
worst-case traffic load   
Latency Budget:  the maximum time duration a packet can stay in a ME without compromising the throughput 
performance under the worst-case traffic load 
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The following parameters are used throughout the paper:  
R:  line rate in the units of bits per second 
K:  number of distinct data path flows or code paths 
TP: minimum packet arrival interval in the units of ME clock cycles 
P:  minimum packet size in the units of bits 
FME : ME clock rate in the units of Hz 
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MT :  Number of threads per ME 
IIB :  Instruction budget in the units of ME clock cycles (assuming one instruction per cycle) 
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LLB :  latency budget in the units of ME clock cycles 
MPL :   Number of MEs working in parallel 
 
The following relationships among different parameters hold for each ME in Fig. 2:  

 
  TP = FME P/R,    IIB = TP,  LLB=MT TP.     (1) 
 
 
To facilitate the analysis, we use the following code path definition:      
 
Tl,k(Mk; m1,k , t1,k, Ɏ1,k, …, mMk, k,, tMk, k,ɎMk, k):   the code path k mapped to ME l with access to resource mi,k ംGmem, Mem, 
or MEM, with I/O access latency Ɏi,k  after the ti,k-th cycle in the code path, where l = 1,2, …, MPL,  k = 1, …, K, and i = 
1, 2, …, Mk, where Mk is the total number of I/O accesses.  
 
|Tl,k|:   the total number of cycles the ALU in ME l spent on the code path Tl, k(Mk; m1,k , t1,k, Ɏ1,k, …, mMk, k,, tMk, k,ɎMk, k), 
where l = 1,2, …, MPL, and k = 1, 2, …, K.  See Fig. 3 for a graphical representation of the code path. 

m2,k, t2,k, Ɏ2,k mMk, k, tMk, k, ɎMk, k m1,k, t1,k, Ɏ1,k . . .

  |Tl,k| 

Fig. 3  T l,k(Mk; m1,k , t1,k, Ɏ1,k, …, mMk, k,, tMk, k,ɎMk, k) 
 

In the code path definition, Ɏi,k is the unloaded I/O latency.  Note that |Tl,k| does not include the latency cycles for I/O 
accesses. Also, note that the same resource may be accessed more than once. Therefore, different mi,k’s may refer to the 
same resource, accessed at different time instants. Even for the same resource access, different Ɏi,k’s may take different 
values. This is because different accesses may perform different tasks with different write/read operations. For a 
memory access with both read and write operations, Ɏi,k should represent the whole duration of the process to account 
for the memory access serialization effect.  
 
The above code path definition only counts the number of instructions and the I/O events and no instruction level details 
are included. This allows the analysis to be applicable to the NPU programming phase when the micro-code is yet to be 
developed.  However, the lack of instruction level details does come with a cost. Namely, any instruction driven events 
cannot be accounted for in ILAB. Hence, the ALU time spent on processing ILP aborts needs to be estimated by other 
means, if necessary. Section 5 will discuss this issue in more details.   
 
We further define Ll,k , the total latency for the k-th code path in ME l, i.e., the time duration a packet with the k-th code 
path stays in ME l. We have, 
 
  Ll,k = |Tl,k| + �j=1: Mk (Ɏj,k +Ɏ��S�GRGɎ��S�GP,                                               (2) 
 
where Ɏj,k is the unloaded I/O latency, Ɏ��S�Gis the queuing delay due to mj, k access contention, Ɏ��S� is the thread waiting 
time in the ready state after the completion of mj, k I/O access, and |Tl,k|  is the number of ALU cycles spent on the code 
path k.  
 
Now, ILAB can be formally expressed as follows:  
 
For a given set of code paths mapped to ME l, wire-speed processing in ME l is achieved if and only if the both 
instruction and latency budgets for all the code paths are met, i.e.,  
 
 |Tl,k|  � IIB   and   Ll,k � LLB ,     for k = 1, 2, …, K,          (3) 
 
The relationships for the two budgets state that to ensure wire-speed forwarding, the ALU in each ME can spend no 
more than IIB = TP cycles on processing each packet and a packet cannot stay in the ME for a time duration longer than 
LLB=MT TP.   
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A pseudo code can used to estimate |Tl,k| and Ll,k. Then whether the wire-speed forwarding could be achieved can be 
easily tested based on Eq. (3).   However, while |Tl,k| can be estimated fairly accurately by estimating the total number 
of instructions assuming one instruction per clock cycle, estimating Ll,k is much harder, as shall be seen in the next 
section.  Finally note that in [1], LLB is used to bound �j=1: Mk Ɏj,k, the total I/O latency, independent of |Tl,k| and Ɏ��S�.  In 
fact, LLB should be used to bound Ll,k as in (2), which is strongly dependent on the number of threads in use due to Ɏ��S�.    
 
4.  Performance Bounds 
 
In this section, we develop an algorithm to estimate Ll,k and consequently the throughput bounds.  We assume that a 
coarse-grained thread scheduling discipline is used in all the MEs, which is the case for Intel IXP series. This discipline 
allows a thread to be executed continuously until there is an I/O event or a programmer-defined voluntary yielding 
event. When such an event occurs, the thread stalls and the control is passed to the next thread in a round-robin fashion.  
For simplicity, it is assumed that the number of ALU cycles spent on a context switching is negligible, which is true for 
most commercial NPUs (one cycle in general).    
 
As can be seen in Eq. (2), Ll,k is composed of four terms. The first term |Tl,k| can be estimated when a pseudo code or a 
flow diagram such as the one in Fig. 1 is available. The second and the third terms in the sum, i.e., (Ɏj,k +GɎ�j,k) represent 
mj,k  access latency including the unloaded latency and queuing delay.  (Ɏj,k +GɎ�j,k) can be approximated by either the 
loaded latency as used in [1], or unloaded latency, assuming Ɏ��S�G dG0 (this is a good approximation when the I/O 
resource corresponding to mj,k is shared by only a small number of threads and/or the I/O access is pipelined). Hence, 
from now on, (Ɏj,k +GɎ�j,k) is replaced by Ɏj,k, which represents either loaded or unloaded latency.  Then the problem is 
narrowed down to the last term in the sum, i.e., Ɏ��S�.  In what follows, we propose an approach to estimate the worst-
case bound for Ɏ��S�.  
 
A simple approach is to use the following worst-case bound:  
 
  Ɏ��S�G�  ¨ġk - X ,                       (4) 
 where  ¨ġk = (MT-1) Max{m=1:Mk+1} { tm,k – tm-1,k },                                        (5)                      
 
where ¨ġk is defined as the worst-case turn-around time, i.e., the worst-case time duration from the instant the next 
thread becomes active to the instant the thread in question is given a chance to be executed again. Note that in Eq. (5), 
t0,k = 0 and tMk+1,k=|Tl,k|. For the coarse-grained thread scheduling discipline, the worst-case turn-around time is when all 
other (MT-1) threads execute the longest segment in the code path, i.e., (Max{m=1:Mk+1} { tm,k – tm-1,k }), and ¨ġk is given by 
Eq. (5).  Inequality (4) simply states that the worst-case thread waiting time Ɏ��S� occurs when there is one cycle left for 
the I/O access when the thread is given a chance to be executed, which leads to a worst-case turn-around time ¨ġk 
before the thread gets another chance to be executed.  Let LD

l,k be the estimated latency upper bound, i.e., 
 
  LD

l,k  =  |Tl,k| + �j=1: Mk (Ɏj,k +¨ġk – XP.         (6) 
 
According to Eqs. (1) and (3), to meet both budgets we must have,  
 
    |Tl,k|� IIB=TP,   LD

l,k � LLB = MTTP .                  (7) 
 
This leads to the following estimation of the minimum packet arrival interval, 
 
    TP= Max{|Tl,k|, LD

l,k/MT} .                    (8) 
 
And according to Eq. (1), the maximum sustainable line rate, 
  
   R = FME P/ Max{|Tl,k|, LD

l,k/MT} .                         (9) 
 
The potential problem with the use of the worst-case bound in Eq. (4) is that the bound can be very loose if the largest 
code path segment in the worst-case code path is large.  To remedy this problem, we first define a thread scheduling 
discipline called the Grain Size n (GS(n)).  GS(n) is the coarse-grained thread scheduling discipline with the addition of 
a minimum number of virtual voluntary yielding instructions embedded in the worst-case code path to reduce the 
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maximum segment size to n, where 1 � n � Max{m=1:Mk+1} { tm,k – tm-1,k }.  Note that unlike the voluntary yielding feature 
available for Intel IXP series [6], the voluntary yielding trigger here is considered virtual in the sense that it is not a real 
trigger, but simply a switch of control to the next thread without cost (e.g., cycles for context switching and ILP aborts).  
The smaller (larger) the n is, the finer (coarser) grained GS(n) is. GS(n) reduces to the coarse-grained thread scheduling 
discipline at n = Max{m=1:Mk+1} { tm,k – tm-1,k } and it degenerates to the fine grained thread scheduling discipline at n = 1.   
Now, we have the following result:  
 
Theorem 1:  For any given number of threads, if n > n’, GS(n) can hide no less I/O latency from the ME ALU than 
GS(n’).   
 

Proof:   Note that if there is at least one thread available for execution at anytime, it doesn’t matter, in terms of the 
overall throughput performance, whether the ALU executes up to n or n’ instructions from one thread at a time, as 
long as the ALU is busy until all the instructions are executed. In this case, GS(n’) and GS(n) can be expected to 
perform equally well in getting the job done.  However, executing n’ instructions instead of n for n’<n from one 
thread at a time will increase the chance of putting the ALU in the idle state or in the non-work conserving mode.  
This is simply because as n gets smaller, the instruction executions for different threads become more parallelized, 
making their next I/O accesses more synchronized, hence more ALU idle time waiting for I/O events. Ƒ 

 
Define Ll,k(n) as the total packet latency in ME l when GS(n) is used. On the basis of Theorem 3, we have Ll,k(n)� 
Ll,k(n’), if n� n’.  This leads to the following important result:  
 
Corollary 1:  Any upper bound of Ll,k(n) for GS(n) is an upper bound of Ll,k  for the coarse-grained thread scheduling 
discipline.  
 

Proof:   From Ll,k(n)� Ll,k(n’), if n� n’, we have Ll,k � Ll,k(n), for n = 1, 2, …, Max{m=1:Mk+1} { tm,k – tm-1,k }. Hence any 
upper bound of Ll,k(n) must be an upper bound of Ll,k. Ƒ 

 
This result allows us to use the minimum of all the upper bounds (as in Eq. (4)) found for GS(n)’sG(where ¨ġk = 
(MT-1)n, for n = 1, 2, …, Max{m=1:Mk+1} { tm,k – tm-1,k }) as the upper bound for Ll,k.  As we shall see in Section 5, the 
latency bound found in this way is pretty tight for most cases studied. A less careful thought may lead to the conclusion 
that the minimum upper bound always occurs at n=1, since this would give the minimum turn-around time ¨ġk. This is 
simply not true because although ¨ġk gets smaller as n reduces, the number of round robins increases due to more 
frequent context switching as n reduces.  Therefore, for any given MT, there is an optimal n value for which the upper 
bound for Ɏ��S�Gis the tightest.  For any given code path, searching for this upper bound can be easily done numerically. 
We wrote a C program of less than 30 lines to implement this algorithm. It finds the latency and throughput upper 
bounds in Eq. (6) and (9), respectively, for any given number of threads in a fraction of a second on a Pentium II PC.  
   
5. Case Studies 
 
In this section, the accuracy of the proposed solution is tested against the cycle-accurate simulation. Due to the page 
limitation, we only present the testing based on an IP forwarding code sample available in Intel IXP1200 SDK 
Developer Workbench.  In an extended version of this paper [15], we tested a set of code samples available in both IXP 
1200 and 2400 simulators, which represent a wide spectrum of data path applications typically seen in a router. The 
results are consistent with the one presented in this paper.  This section is composed of two subsections. In the first 
subsection, we test the tightness of ILAB or bounds in Eq. (3). In the second subsection, we test the accuracy of the 
latency and throughput bounds found by the algorithm developed in the previous section.   
 
A. ILAB Testing 
 
To test ILAB, the following simulation using Intel IXP1200 SDK cycle-accurate simulator is performed. One ME with 
up to four threads is configured for receiving and processing the packets from a single port, and two other MEs with 
four threads each are configured for transmitting the packets, resulting in a two-stage pipeline configuration.  All the 
packets have the same code path at the receive stage, i.e., an IP forwarding code path, directly taken from a code sample 
which comes with the simulator (See Table 2 for details). This configuration creates a potential bottleneck at the receive 
stage in the pipeline, which allows ILAB to be tested, as if only the receive stage exists.  Since only a single port is 
supported, packets arrive sequentially at a fixed time interval of TP cycles, which determines both IIB and LLB as given in 
Eq. (3).  By increasing the packet arrival rate or reducing TP (refer to the first equation in Eq. (1))  till there is a packet 
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drop, one can then identify the maximum or saturated line rate the ME can sustain when a given number of receive 
threads (from 1 to 4) is configured.  The results are shown in Table 1 (with the parameter settings:   ME clock rate = 
200 MHz, packet size = 64 bytes, and code path length at the receive stage =157 instructions or cycles).   

 
 First, note that the ALU time is partitioned among active, aborted, stalled, and idle states. The active state is when the 
ALU executes the instructions; the aborted state is when ALU deals with broken ILPs due to context switching, 
branching, etc.; the stalled state is when ALU is in a waiting state; the idle state is when ALU is idle.  Second, one notes 
that the instruction budgets for all four cases are not exceeded (note that the code path length =157). Second, the 
simulated total latencies closely match their respective latency budgets, meaning that the latency budgets are barely met 
and further increase in the line rate will result in packet losses, agreeing with the simulation results.   The results also 
suggest that for the code path studied, the latency budget be constrained, not the instruction budget.  Three more code 
samples are used in [15] to do the testing and the results are found to be consistent with the above ones.    
 

 
 
 
 
 
 
 
 
 
 

# 
Threads 

(MT) 

Simulated 
Saturated 
Line Rate 

(Rs) 
(Mbps) 

% ALU 
Active-RX 
Estimated  

(Șl=157/IIB) 

% ALU - RX   Instructio
n budget 
(IIB  RX 
stage) 

Latency 
Budget(LL

B RX 
stage) 

Simulated 
Total 

Latency  
 (Ll,k) 

(RX stage) 
     Active 

(ơactive) 
Aborted 
( ơaborted) 

Stalled 
(ơstalled) 

Idle 
( ơidle) 

     

1 183 28.04 28.8 9.4 0.4 61.4 560 560 537 
2 328 50.32 51.4 15.5 1.0 32.1 312 624 600 
3 431 65.97 68.7 19.1 1.4 10.8 238 714 687 
4 449 68.84 75.6 22.4 1.5 0.5 228 912 872 

Table 1 Simulation testing for ILAB 
 
B. Throughput Bound Testing 
 
The IP forwarding code path related information in the receive pipeline stage is listed in Table 2. Since Intel IXP1200 
adopts a store-and-forward architecture, it requires moving the packet into and out of a SDRAM, writing the packet 
descriptor to and reading it from a SRAM, and multiple IP lookups in a SRAM, resulting in multiple stalls. The number 
of instructions for each code path segment ( tm,k – tm-1,k ) and Ɏj,k (the unloaded latency in this example3) for each I/O 
access are estimated and listed in columns 2 and 4, respectively.  The Task and Type of I/O Access columns are listed 
for the purpose of completeness and the semantics of instructions and I/O accesses do not play any role in the worst-
case analysis, which involves only the code path information in columns 2 and 4.  
 
 The testing results are summarized in Table 3.  Note that two sets of results are given. The first set (columns 2 to 4) 
assumes that one has no knowledge about Įaborted /Įactive in Table 1 and the estimation does not take the possible 
imperfection of ILP into account. The second set (columns 5 to 7) assumes that one has perfect knowledge about Įaborted 
/Įactive, which is assumed to be the same as the measured one in Table 1, and the imperfection of ILP is accounted for 
the code path length estimation.   For MT = 1, LD

l,k in column 2 is also obtained from Table 2 by simply taking the sum 
of the two data in the last row. The rest of the results in columns 2 are the tightest bounds found by searching the 
minimum of the latency bounds of GS(n) for n = 1, 2, …,Max{m=2:Mk} { tm,k – tm-1,k }.  The corresponding estimated 
maximum line rate R’s in column 3 are calculated from Eq. (9) and their errors with respect to the simulated maximum 
line rates Rs’s as listed in Table 1 are also given in column 4. The same set of data based on the effective |Tl,k| with abort 
effect accounted is given in columns 5 to 7.   
 
One can see that even without taking into account the imperfection of ILP, the estimated line rates closely match the 
simulated ones within 16% errors. The last column shows that by taking into account the imperfection of ILP, the errors 
further reduces to about 12% or less. The results for six other case studies based on both IXP 1200 and 2400 SDK 
simulators in [15] are found to be consistent with the one presented here.  

                                                 
3 The queuing delay Ɏ�j,k  due to resource contention for all the I/O accesses are found to be very small for almost all the cases studied 
and can be neglected.  
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Task Instructions 
between stalls 

( tm,k – tm-1,k ) 

Type of I/O 
access 

Unloaded 
latency 
Ɏj,k 

Check receive ready flags 5 FBI read 14 
Move packet from IX Bus to RFIFO 8 FBI write + IX 

Bus receive 
76 

Read recive control information (after reading 
packet from IX Bus to RFIFO) 

2 FBI read 19 

Wait for buffer allocation (in SDRAM); get the 
descriptor from SRAM 

11 SRAM read 17 

Read 2 Quad words from RFIFO into 
microengine for IP validation 

16 RFIFO read 18 

Read 2nd 32 byte to SDRAM (in the allocated 
buffer) 

15 RFIFO read 22 

LPM (IP lookup) 40 SRAM read 17 
LPM (IP lookup) 7 SRAM read 17 
LPM (IP lookup) 5 SRAM read 17 

Get next hop information from SDRAM 7 SDRAM read 47 
Write packet descriptor to SRAM (after associating 

it with a TX port) 
16 SRAM write 18 

Read queue descriptor from SRAM (for enqueue 
operation) 

4 SRAM read 22 

Write the packet descriptor to SRAM (to the TX 
queues associated with the TX port) 

15 SRAM write 20 

Misc 6    
TOTAL 157   324 

 
Table 2 Worst-case total latency estimation for generic IP forwarding in IXP1200 

 
 # of 

Threads 
(MT) 

LD
l,k  

( aborted not 
cosidered) 

R 
(Mbps)  

(aborted not 
considerd) 

Error(%) 
(|R-Rs|/Rs) 

(aborted not 
considered) 

LD
l,k  

(aborted 
considerd)  

 R 
(Mbps) 

(aborted 
considered) 

Error(%)  
(|R-Rs|/Rs) 
(aborted 

considered) 
1 485 211 0.37 535 191 4.59 
2 598 343 7.40 649 316 3.79 
3 759 405 15.29 811 379  12.11 
4 921 445 10.23 973 421 6.24 

 
 

 
 
 
 
 

Table 3 Testing of the throughput bounds 
    
 
 
7. Conclusions and Future Work 
 
In this paper, based on the Instruction-and-LAtency-Budget-based methodology (ILAB), we proposed an algorithm to 
find the tight latency bounds for any ME pipeline stage. This algorithm allows the performance of the fast data path 
functions to NPU configuration mapping to be quickly tested solely based on the worst-case code path derivable from 
the pseudo code of the fast data path functions. Case studies based on the code samples available in the Intel IXP 1200 
and 2400 Developer Workbenches are performed. The performance bounds are found to be within 17% of the cycle-
accurate simulation results.  
 
A limitation of ILAB is that the user of ILAB is responsible for the identification of the worst-case code path from the 
pseudo-code and there has been no systematic approach for the worst-case code path identification. Hence, our future 
research will focus on developing an automatic procedure for the worst-case code path identification.    
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Application 
(MT =8) 

LD
l,k 

(aborted not 
considered) 

R (Mbps) 
(aborted not 
considered) 

Error(%) 
(|R-Rs|)/Rs 

(aborted not 
considered) 

LD
l,k 

(aborted 
considered) 

R (Mbps) 
(aborted 

considered) 

Error(%) 
(|R-Rs|)/Rs 
(aborted 

considered) 

Rs (Mbps) 
(aborted 

considered) 

Diffserv 
POS 3786 811 12 3710 828 8.4 904 

MPLS 3404 519 8.1 3335 530 4.2 553 
IPv4 

Ethernet 3181 821 5.6 3111 839 0.9 850 

 
Table 4 Testing results for three code samples in IXP 2400 at MT = 8 

 
 
The code samples studied are DiffServ with POS interface, MPLS, and IPv4 with Ethernet Interfaces. The number of 
threads is fixed at eight.  As one can see, the estimated throughput values are within 12% of the cycle-accurate 
simulation results, even without taking into account the abort effect.  
 
 


