
Contention-Aware Scheduler: Unlocking Execution Parallelism in

Multithreaded Java Programs

Feng Xian, Witawas Srisa-an, and Hong Jiang

Department of Computer Science & Engineering

University of Nebraska-Lincoln

Lincoln, NE 68588-0115

{fxian,witty,jiang}@cse.unl.edu

Abstract

In multithreaded programming, locks are frequently used

as a mechanism for synchronization. Because today’s oper-

ating systems do not consider lock usage as a scheduling

criterion, scheduling decisions can be unfavorable to multi-

threaded applications, leading to performance issues such as

convoying and heavy lock contention in systems with multi-

ple processors. Previous efforts to address these issues (e.g.,

transactional memory, lock-free data structure) often treat

scheduling decisions as “a fact of life,” and therefore these

solutions try to cope with the consequences of undesirable

scheduling instead of dealing with the problem directly.

In this paper, we introduce Contention-Aware Scheduler

(CA-Scheduler), which is designed to support efficient ex-

ecution of large multithreaded Java applications in mul-

tiprocessor systems. Our proposed scheduler employs a

scheduling policy that reduces lock contention. As will be

shown in this paper, our prototype implementation of the

CA-Scheduler in Linux and Sun HotSpot virtual machine

only incurs 3.5% runtime overhead, while the overall per-

formance differences, when compared with a system with

no contention awareness, range from a degradation of 3%

in a small multithreaded benchmark to an improvement of

15% in a large Java application server benchmark.

Categories and Subject Descriptors D.3.4 [Programming

Language]: Processors—Run-time Environments; D.4.1

[Operating System]: Process Management—Concurrency,

Scheduling, Synchronization, Threads

General Terms Experimentation, Languages, Performance
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1. Introduction

To support portability, better security, and ease of resource

management, modern object-oriented languages such as

Java and C# utilize virtual machine technologies to provide

execution environments by emulating simple instruction sets

such as Java bytecodes or the .NET intermediate language.

Because these virtual machines often provide complete ex-

ecution environments, they also generate rich runtime in-

formation during execution. Past studies have shown that a

virtual machine often exploits such information to further

optimize itself in subsequent runs or continuously during

execution, especially in long-running programs.

For example, method invocation information has been

used by VMs to select the complexity of dynamic compila-

tion optimizations [18]. Runtime behaviors have been used

to select the optimal garbage collection technique for an ap-

plication or an execution phase within an application [28].

Moreover, logging of runtime information has been valuable

in helping programmers detect and isolate errors as well as

identify performance bottlenecks.

Yet, such information has rarely been exploited by the un-

derlying operating systems to create more efficient environ-

ments for high-level language executions. To date, the usage

of this information has been limited to garbage collection

tuning through virtual memory managers [12, 37]. We see a

great opportunity to leverage this information to further im-

prove the efficiency of thread-level parallelism, a program-

ming paradigm widely adopted today due to the emerging

popularity of chip multiprocessor systems.

In multithreaded applications, locks are frequently used

as a mechanism to prevent multiple threads from having con-

current access to shared resources and to synchronize the ex-

ecution order of threads. For example, a lock can be used to

protect a shared code section, commonly referred to as a crit-

ical section. When a thread wants to access this code section,

it must first obtain the lock. If it is successful, it can perform



memory access. If it is not successful (i.e., lock contention1),

it either keeps trying to obtain the lock (spin-locking) or is

suspended until the lock becomes available. Because today’s

operating systems do not consider lock usage as a scheduling

criterion, they can:

• schedule threads that contend for currently locked re-

sources. In this scenario, multiple threads that try to ac-

cess the same critical section can be scheduled to run at

the same time on different processors. The one that suc-

cessfully obtains the lock continues to execute, while the

ones that fail to obtain the lock are suspended.

• preempt an executing thread in the middle of a critical

section. In this scenario, a thread holding the lock to the

critical section is suspended due to time quantum expi-

ration. This means that if the operating system schedules

other threads that need to access the same critical section,

they will also be suspended (i.e., convoyed).

While there is a large body of work that addresses the is-

sue of lock contention by eliminating or minimizing the use

of locks (e.g., transactional memory and lock-free data struc-

tures [16, 24]), the focus of our work is entirely different.

Specifically, our research goal is not to avoid using locks,

but instead to proactively avoid lock contention by supplying

the necessary runtime information to the underlying operat-

ing system so that it can make better scheduling decisions.

Our rationale for taking this approach is outlined below:

1. It is conceivable that more informed scheduling deci-

sions can reduce the number of lock contention, lead-

ing to greater execution parallelism and improved over-

all performance. However, it is unclear whether such

improvement outweighs the additional scheduling com-

plexity that may result in longer and non-deterministic

decision times. Over the past few years, we have seen

that in certain types of applications, it is worthwhile to

trade some bottom-line performance for higher program-

ming productivity (e.g., the adoption of garbage collec-

tion and transactional memory), better security and cor-

rectness, and greater portability (e.g., the adoption of vir-

tual machine monitors and high-level language virtual

machines). Based on a similar argument, our work inves-

tigates whether it is worthwhile to trade the simplicity of

modern schedulers for higher execution parallelism.

2. It is common for hardware components supporting large-

enterprise Java applications to be very specialized (e.g.,

a large number of processing cores, large storage space,

and wide network bandwidth). However, these systems

frequently utilize generic commercial operating systems.

It is debatable whether the stringent performance require-

ments (e.g., high throughput and short response time)

of these server applications warrant customized operat-

1 A lock contention occurs whenever one process or thread attempts to

acquire a lock held by another process or thread [26].

ing systems and virtual machines. As will be shown in

this paper, our implementation effort to extend a widely-

adopted operating system (OS) and a commercial Java

Virtual Machine (JVM) to achieve our research goal is

quite modest, while yielding significant performance im-

provements. As a result, the integration of our proposed

solution into commercial operating systems is worth con-

templating.

3. There are many deployed Java and .NET based programs

that already use locks to manage concurrency. Our pro-

posed solution will allow these applications to immedi-

ately take advantage of these benefits without having to

rewrite the application code.

This paper. We introduce a Contention-Aware Scheduler or

CA-Scheduler. Our proposed scheduler receives information

directly from the JVM to proactively reduce the possibility

of lock contention by

1. dynamically clustering threads that share similar lock-

protected resources, and then serializing each cluster to

reduce the likelihood of lock contention, and

2. giving longer execution quanta and higher execution pri-

ority to threads in the middle of critical sections.

We implemented a prototype of CA-Scheduler as part of

a multiprocessor version of the Linux scheduler with nec-

essary support from Sun HotSpot JVM (presented in Sec-

tion 2). Our analysis of the complexity of the CA-Scheduler

showed that it incurred only 2 to 3.5% runtime overhead

(presented in Section 3). We then evaluated its performance

using seven multithreaded Java benchmarks in a computer

system with 16 processors. Our results showed that the dif-

ferences in the overall performance ranged from a degrada-

tion of 3% in a desktop application with low lock contention

to an improvement of 15% in a large application server

benchmark with high lock contention. The reductions in the

number of lock contention are 38% and 45% in two Java ap-

plications server benchmarks, ECPerf and jAppServer2004,

respectively (presented in Section 4).

2. Introducing CA-Scheduler

In this section, we briefly describe an overview of the pro-

posed CA-Scheduler, discuss its design goals, and provide

the implementation details.

2.1 Overview

Recently, we have seen significant advancements of virtual

machine technologies, ranging from high-level language vir-

tual machines such as JVM and .NET CLR to system virtual

machines such as Microsoft Virtual PC [20] and Transmeta

Code Morphing [10]. One common characteristic of these

virtual machines is that they are very dynamic. Various pro-

filing and optimization techniques are used to improve per-

formance. For example, most JVMs often monitor garbage



collection performance and allocation rates to decide if the

heap size should be adjusted. Moreover, modern JVMs mon-

itor lock-contention behavior to adaptively apply different

locking mechanisms to maintain good performance and im-

prove CPU utilization [4, 11]. Unfortunately, such runtime

information is usually discarded at the end of execution or is

used only within virtual machines [3, 27, 28].
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Figure 1. An Overview of the proposed CA-Scheduler

We believe that this runtime information is also valuable

to operating systems. However, there have been very few ef-

forts that allow operating systems to exploit such informa-

tion. Two notable examples are efforts by Yang et al. [37]

and Grzegorczyk et al. [12] to exploit virtual memory infor-

mation to adaptively identify optimal heap sizes to improve

garbage collection performance. Another example is an ef-

fort by Xian et al. to exploit object allocation behavior as a

scheduling criterion to reduce garbage collection overhead

[36]. Based on the results of these efforts, we see a great

opportunity to make operating systems exploit runtime in-

formation generated by virtual machines in order to control

thread execution orders to avoid lock contention.

Many modern schedulers make decisions according to the

amount of time a thread is spent on the CPU and the amount

of time a thread is spent on doing I/O accesses [1]. To sup-

port our proposed technique, we created three additional

components, two in the HotSpot JVM and one in the Linux

kernel, to assist with making contention-aware scheduling

decisions (see Figure 1): a Synchronization Monitor, which

is implemented in the JVM to record synchronization ac-

tivities; a Contention Analysis Engine, which is also imple-

mented in the JVM to analyze the lock usage information

and create CPU mapping plans that will be used by our mod-

ified kernel; and a Thread Migration system call, which is

implemented in the kernel to migrate threads to the corre-

sponding CPUs based on the JVM generated plan.

We also modified a typical scheduler to consider lock

usage as a scheduling criterion (i.e., the Contention-Aware

Scheduler in Figure 1). The modified JVM passes infor-

mation to the kernel through two variables that contain the

Thread-to-CPU Mapping Plan and the number of monitors

held by the currently executing thread (i.e., lockCount in Fig-

ure 1). The next two subsections provide detailed informa-

tion about the design and implementation of each of these

components.

2.2 Design Goals

The proposed CA-Scheduler is designed to reduce the oc-

currences of lock contention in large multithreaded Java ap-

plications by allowing our modified Java Virtual Machine to

“push” pertinent runtime information to our modified oper-

ating system so that it can accomplish two scheduling tasks:

Task 1—Preventing contention due to concurrent execution

of multiple threads on multiple processors. When threads

that share a lock-protected resource are executing in parallel,

they may contend on that resource, causing threads that

cannot obtain the lock to be suspended. (We refer to this type

of contention as inter-processor contention.) One possible

solution is to not schedule threads that may contend. To do

so, the scheduler must know exactly when a thread is holding

the lock and precisely which threads share that same lock.

In typical multiprocessor schedulers such as the one em-

ployed in Linux, a thread can be scheduled on different pro-

cessors throughout its lifetime to achieve load balancing.

Thus, dynamically maintaining the necessary information to

achieve our goal is likely to incur significant runtime over-

head. A study has shown that propagating such information

to every processor can be quite expensive. Moreover, propa-

gation delays can also result in unstable system states. [35].

We modified Sun HotSpot JVM to cluster threads based

on lock usage. In our approach, each cluster contains a group

of threads that are likely to contend with each others. The

clustering and thread-to-CPU mapping information is then

made available to the operating system kernel for the ac-

tual CPU assignment (more information about this process is

provided in Sections 2.3.1 and 2.3.2). By executing threads

that share lock-protected resources (from now on, referred

to as shared resources) serially, we eliminate the possibility

that multiple threads executing on different processors ac-

cess a shared resource simultaneously. Note that our study

also revealed that there are instances in which threads share

resources across clusters (e.g., some resources are shared by

most threads or all threads). In such a scenario, contention

may be unavoidable.

One possible shortcoming of this approach is underuti-

lization of processing cores. The execution of threads may

be serialized even though there are enough processing units

to support greater parallelism. As will be shown in Section

4.2, we found that in a server application utilizing the same

number of threads as the number of processors, it is pos-

sible that the performance benefit of reducing contention is

greater than the performance benefit of higher parallelism.



In addition, in large application server applications, the num-

ber of threads tends to be significantly larger than the num-

ber of processing cores; thus, proactively serializing threads

still allows processors to be well utilized. Lastly, our system

also has a load-balancing mechanism to equally divide some

special clusters to multiple CPUs (more information about

the load balancing mechanism is provided in Section 2.3.1).

Task 2—Avoiding thread preemption while locks are be-

ing held. With clustering, we can reduce lock contention

due to concurrently executing threads. However, in most

schedulers, a thread can be preempted while it is holding

locks, leading to contention when other threads sharing the

same resources are scheduled. (We refer to this type of con-

tention as intra-processor contention.) To reduce this type of

contention, we adopted a quantum-renewing approach that

gives longer execution quanta to threads in critical sections

[34, 2, 19]. Our scheduler checks if an executing thread is

holding a lock. If it is, the scheduler ignores the timer inter-

rupt and schedules the thread for one more quantum. If the

renewed quantum expires before the thread relinquishes the

lock, the scheduler can make more quantum renewals.

To prevent other threads from starving, our scheduler can

only make at most a predefined number of consecutive re-

newal requests for an executing thread. We discovered that

in Java, a thread already holding a lock sometimes acquires

several more locks. This means that the time taken to release

the first lock can be very long. Moreover, suspended threads

that hold multiple locks can cause other threads to convoy.

Thus, it is more beneficial to schedule these threads first so

that locks are relinquished quickly. We propose a dynamic

prioritization strategy called Critical-Section-First (CSF) to

schedule suspended threads that are holding multiple locks

at higher priority. With this approach, we can significantly

reduce occurrences of convoying. Moreover, our approach

also shortens the periods that threads must stay in the sus-

pended state waiting for locks to be released. In the next

subsections, we detail the necessary modifications made to

the JVM and the OS to support the proposed tasks. We also

provide information related to tuning the proposed system

and analyze its overhead.

2.3 Implementation Details

We implemented the CA-Scheduler in the HotSpot JVM,

which is released as part of Sun’s OpenJDK project (version

7)2 and the Linux multiprocessor kernel version 2.6.20. In

the rest of this section, we describe modifications made to

HotSpot (from now on, referred to as JVM) and the Linux

kernel (from now on, referred to as kernel) to support the

proposed CA-Scheduler.

2 See OpenJDK project at http://openjdk.java.net.

2.3.1 Java Virtual Machine Modifications

To provide the necessary information to the kernel, we mod-

ified the JVM to perform the following functions:

Record synchronization events. We modified HotSpot to

periodically record synchronization events for both interpre-

tation and dynamic compilation modes. We captured these

events by augmenting the functions inside HotSpot that han-

dle monitors and manipulate locks. Our recording mech-

anism is activated once the number of created threads is

greater than a predefined value. In our experiment, we set

this number to 10 because our smallest benchmark spawns

10 threads. Once the number of created threads has not

changed for a long period of time, the mechanism is deac-

tivated. The mechanism can be reactivated if the number of

threads changes again.

When a thread enters a monitor, the JVM inserts the ob-

ject associated with the monitor into the synchronization-

event vectors (seVectors). Each thread has an associated vec-

tor. To provide flexibility in choosing the amount of storage

overhead, the size (referred to as s) of seVector can be tuned.

We will discuss the empirical process to identify a general-

ized value of s in Section 3.2.

Form clusters of related threads. There are two steps in

the clustering process. Once the number of synchronization

events of a thread has reached s (i.e., one of the seV ectors

has the size of s), the JVM performs the first step by process-

ing each seVector to generate a corresponding contention

vector (conVector). Each entry of a conVector indicates the

number of times that a thread has attempted to access a

shared object (i.e., the number of synchronization events per-

formed on the object). An example of converting seVectors

to conVectors is provided in Figure 2.

O1 O1 O1 O2 O2 O2 O3 O4

O1 O1 O2 O2 O2 O2 O2

T1

O3 O3 O3 O4 O4
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Figure 2. Converting seVectors to conVectors. In this exam-

ple, we assume that s = 8. When a seV ector is fully utilized

(that of T1 in this example), all seV ectors are processed to

generate conV ectors.



The second step is clustering threads. There are many

existing clustering algorithms such as K-means Fuzzy C-

means and hierarchical clustering [5, 15, 6]. However, these

algorithms are too expensive to be deployed on-line in large

multithreaded systems. Another option is to employ offline

profiling, which applies clustering algorithms to trace infor-

mation generated during the previous runs [9]. This cluster-

ing information is then used to perform various optimiza-

tions in the subsequent runs. While profiling can be accurate,

assuming that the runtime behavior does not change from

one run to another, it requires an overhead of executing the

profile run. If the runtime behavior changes, the profiled in-

formation may no longer be useful.

To perform clustering accurately and cheaply, we propose

an on-line heuristic clustering algorithm. The algorithm is

based on an assumption that clusters can be formed in such

a way that threads belonging to two different clusters seldom

contend, except for some objects that are shared by a large

number of threads (refer to as globally-shared objects). This

assumption is based on the result of our previous work on

thread clustering [9]. Our algorithm considers an object to

be globally shared if more than half of the total number

of threads has tried to acquire the monitor associated with

this object. When forming clusters, these globally-shared

objects are not considered as clustering criteria. Typically,

the number of globally-shared objects is very small (see

Table 1).

Our clustering mechanism works as follows. First, the

JVM randomly chooses a thread as a representative of a clus-

ter. It then calculates the similarity of each of the remaining

threads to this thread. The similarity of two threads, T1 and

T2, is a normalized vector product that can be calculated us-

ing the following formula:

similarity(T1, T2) =
1

s2

v
∑

i=1

T1[i] × T2[i],

where Tx[i] is the ith entry of the conVector of thread Tx and

v is the size of the conVector.

As defined earlier, s is the size of the seVector. Thus, the sum

of a conVector is equal to s, resulting in similarity values

ranging from 0 to 1. Also note that the JVM disables the

recording mechanism when it tries to form clusters. This is

necessary to maintain consistency in all seVectors.

The rationale for choosing the proposed similarity metric

is two-fold. First, it only considers the same object entries in

both vectors with non-zero values. A non-zero value means

that these two threads (T1 and T2) access the same objects

and therefore can possibly contend on the same object. Sec-

ond, the degree of similarity between T1 and T2 also indi-

cates the likelihood that T1 and T2 will contend on an object.

That is, a higher similarity value means that the likelihood of

contention is also higher.

If the similarity between the representative thread and

a thread is greater than simThreshold, then this thread is

placed in the same cluster as the representative thread. (The

tuning of simThreshold will be discussed in Section 3.2.)

The process is repeated until every thread has been compared

with the representative thread. At this point, the first cluster

is formed. Our JVM then repeats the same process on the

remaining threads that are not part of any cluster, until no

more clusters can be formed.

The computation complexity of the clustering algorithm

is O(Nt ×Nc), where Nt is the total number of Java threads

and Nc is the total number of clusters. Generally, Nc is

much smaller than Nt. Also note that it is possible that se-

lecting a different representative thread can yield a different

clustering result. As will be shown in Section 3.2, the pro-

posed clustering scheme provides a good balance between

accuracy (over 75% in all applications when compared to

manually-formed clusters) and low clustering overhead (less

than 2% of overall execution time in all applications). This

high degree of accuracy indicates that the differences due to

randomness in selecting the representative thread may not be

significant.

While forming clusters, our JVM also calculates the con-

tention intensity of each cluster by averaging all the simi-

larity values within that cluster. This value is then used to

classify whether a cluster is strongly contended (referred to

as strong-contention) or weakly contended (referred to as

weak-contention). This classification is used to help with the

load balancing process, in which our JVM generates infor-

mation to map clusters to CPUs.

Generate CPU mapping plan. Once clusters are formed,

our JVM creates a mapping plan that achieves load balancing

and minimizes contention across multiple processors. There

are three steps in this process. In the first step, our JVM

segregates clusters into two groups: 1) a strong-contention

group that comprises strong-contention clusters, and 2)

a weak-contention group that comprises weak-contention

clusters. Specifically, if the contention intensity of a clus-

ter is higher than the ciThreshold, the cluster is placed in

the strong-contention group. If the intensity is less than

ciThreshold, the cluster is placed in the weak-contention

group (more information about tuning ciThreshold is given

in Section 3.2).

Next, the JVM calculates the number of threads that

should be assigned to each processor in an ideal case. As

stated earlier, Nc represents the number of clusters and Nt

represents the number of threads. The number of processors

is denoted as Np. Ideally, there should be Tavg = Nt

Np
threads

assigned to each processor. Suppose that processors are rep-

resented as P1, P2, . . . , PNp
and their workloads (i.e., the

number of threads) are TP1, TP2, . . . , TPNp
. We denote

a sorted list of underutilized processors as U. A processor

is underutilized if its workload is less than Tavg . Since the

initial workload of each processor with respect to our appli-



cation is 0, U is initially equal to P1, P2, . . . , PNp
. Note that

U will dynamically change throughout this process.

In the second step, the JVM maps clusters in the strong-

contention group to the processors. Suppose that there are m

strong-contention clusters. Our JVM assigns these clusters

to processors in the following manner. First, these m clusters

are sorted from the largest size to the smallest size, which are

denoted as SC1, SC2, . . . , SCm, respectively. The numbers

of threads in these clusters are TSC1, TSC2, . . . , TSCm.

Then, the JVM assigns the largest cluster SC1 to P1 and

updates the workload of P1 (i.e., TP1 ⇐ TSC1). At the

same time, it also updates U by removing any processor that

has a workload equal to or greater than Tavg . Once these

processors are removed, U is rearranged in the order of the

lightest workload to the heaviest workload.

In the third step, the JVM performs load balancing with

weak-contention clusters. Assume that the current size of U

is n; i.e., there are n processors that are underutilized. We

denote these processors as PU1, PU2, . . . , PUn in an in-

creasing order of workload, which are TU1, TU2, . . . , TUn,

respectively. Note that at this point, the remaining proces-

sors (Np−n) should be fully utilized with strong-contention

clusters and are not considered as available processors in the

current step.

Suppose that there are k clusters in the weak-contention

group. They are denoted as WC1, WC2, . . . , WCk from

the largest size to the smallest size. The numbers of threads

in these clusters are TWC1, TWC2, . . . , TWCk, respec-

tively. To achieve load balancing, there should be Tavg2 =
n

∑

i=1

TUi +
k

∑

i=1

TWCj

n
threads assigned to each of the re-

maining processors. The load balancing process simply

merges or splits each of the weak-contention clusters un-

til the workload of each underutilized processor is equal to

Tavg2. If some threads become inactive over time, it may

become necessary to regenerate a new mapping plan to re-

balance the load.

In terms of time complexity, the first step (segregating

clusters into strong- and weak-contention groups) has the

complexity of O(Nc). The second step (strong-contention

mapping) has two major tasks: sorting cluster (O(m ×
log m)) and updating U (O(m × log Np)). Thus, the com-

plexity of the second step is O(m × log m + m × log Np).
For the last step, the time complexity is O(k × log m +
k × log Np). As a result, the total time complexity of clus-

tering and making the thread-to-processor mapping plan

is O(Nc × log Nc + Nc × log Np) because (m + k) =
Nc, (m× log m + k × log k) < (m + k)× log (m + k) or

Nc × log Nc.

Mark when threads are in critical sections. For each Java

thread, our JVM maintains a field called lockCount, which

indicates the number of unique locks held by a thread. When

a thread has successfully entered a monitor, our JVM in-

crements its lockCount value. When a thread exits a mon-

itor, our JVM correspondingly decrements its lockCount

value. Therefore, we can use the value of lockCount to check

whether a thread is holding locks. If the value is 0, then the

thread is not holding any lock. If it is 1, the thread is holding

a lock. If it is greater than 1, then the thread is holding mul-

tiple locks. This information will be used by our proposed

Critical-Section-First (CSF) scheduler to dynamically ad-

just the execution priority of a thread. More information

about the CSF scheduler will be given in the next subsec-

tion.

2.3.2 Kernel Modifications

In this section, we describe modifications made to the kernel

to (i) segregate Java threads from other types of threads;

(ii) physically assign threads to CPUs; and (iii) make the

scheduler contention-aware.

Create a system call to register Java threads. The pro-

posed CA-Scheduler is built on the top of the default Linux

scheduler. Thus, these two scheduling policies can co-exist,

and the CA-Scheduler can selectively apply its schedul-

ing policy to the corresponding Java threads. However, in

open systems such as Linux, there are also non-Java threads

(e.g., essential services) concurrently running with Java

threads. To distinguish between Java and non-Java threads,

we created a new system call, register thread, to allow Java

threads to set a field, isJava in the thread data structure (i.e.,

task struct in Linux).

When a Java thread is executing, timer interrupts still oc-

cur as in the default scheduler; however, the CA-Scheduler

can choose to ignore the interrupts and continue to renew

more time slices as needed. It is also likely that a system may

have multiple Java applications running at the same time.

These Java applications may require different configurations

of the CA-Scheduler (e.g., different parameter values). The

proposed CA-Scheduler is designed to be customizable so

that each Java application can configure its own scheduling

parameters. To achieve this flexibility, we modified HotSpot

to create a metadata structure for each VM instantiation. The

structure is instantiated through a new system call, regis-

ter vm, during initialization and is referenced by the CA-

Scheduler through a pointer field, jvm info in task struct to

enforce the corresponding policy when a thread belonging to

a Java application is executed.

Create a system call to map threads to CPUs. Because

our mechanism to map thread to CPU is an on-line one,

our JVM does not initially have the mapping information

as it is incrementally generated during runtime. Therefore,

at the beginning of execution, the default thread scheduler

is used. Once the JVM has generated the mapping plan,

threads may have to be migrated to different CPUs based

on this plan. To accomplish this task, we created a system

called migrate cluster to retrieve the mapping plan from the

JVM (discussed in Section 2.3.1) and to physically assign



threads to CPUs. Note that each Java thread is pinned to the

assigned processor until the next mapping call to ensure that

the default load-balancing mechanism used in Linux does

not interfere with our mapping. Note that our system can

create multiple mapping plans throughout execution of an

application.

Modify thread scheduler. After threads have been mapped

to CPUs, the kernel independently schedules threads as-

signed to each processor. To reduce the occurrences of intra-

processor contention, we propose a Critical-Section-First

(CSF) scheduling strategy that makes threads relinquish held

locks as soon as possible. This minimizes the waiting time of

other threads to obtain these held locks. There are two major

components of the proposed Critical-Section-First schedul-

ing strategy:

Dynamic prioritization mechanism. To schedule threads in

critical sections first, we need to prioritize the threads that

have larger lockCount values. In our implementation, we ex-

tended the Linux scheduler to dynamically adjust the prior-

ity of each thread according to its lockCount. The default

Linux scheduler uses a priority-based round-robin schedul-

ing policy and adjusts thread priority based on the average

sleeping time. We adopted the existing mechanism in Linux

to perform priority adjustment. That is, each thread can get a

bonus to increase its priority. The calculations of the bonus

and priority adjustment are as follows:

bonus = (p → lockCount) ×
MAXbonus

MAXlockCount

prio = p → static prio − bonus

This formula indicates that the bonus is proportional to

the lockCount value. It maps a thread’s lockCount to the

range of 0 to MAXBONUS . If a thread is not in any critical

section (i.e., lockCount=0), then its priority does not change.

Otherwise, its static priority is subtracted, meaning that its

priority rises. Note that bonus is between -5 and +5. By

prioritizing threads in critical sections, we also avoid priority

inversion, in which a suspended thread with low priority

holds a lock that is needed by a higher priority thread [26].

Quantum renewal mechanism. We adopted a quantum re-

newing mechanism that allows a thread in a critical sec-

tion to continue execution until it exits the critical section

[2, 19, 34]. Our scheduler checks the executing thread’s

lockCount when a timer interrupt occurs. If its lockCount

is greater than 0, our scheduler ignores the interrupts and

reschedules the thread for another quantum. To avoid starva-

tion and live-lock, we set the maximal number of renewals

(maxRenewal) to five. That is, a thread will be preempted af-

ter the scheduler has made five consecutive renewal requests.

We selected five based on our empirical study that shows that

a thread rarely needs more than five quanta to acquire and

relinquish a lock.

2.4 Summary

The proposed CA-Scheduler is designed to reduce lock con-

tention in multithreaded Java applications through a collabo-

ration between our modified HotSpot JVM and our modified

Linux kernel. We extended HotSpot to include the follow-

ing services: (i) monitoring synchronization events; (ii) pro-

cessing the recorded information and performing analysis to

cluster threads that are likely to contend; and (iii) generating

thread-to-CPU mapping plans that achieve contention reduc-

tions and load-balancing. We then extended the Linux kernel

to include the following features: (i) being able to receive

thread-to-CPU mapping plans from the JVM; (ii) executing

the mapping plans and enforcing the contention-aware pol-

icy; (iii) being able to fall back to the default policy when

native threads are scheduled or when the contention-aware

policy is not applicable; and (iv) having escape mechanisms

to avoid starvation and livelock. The proposed system also

contains several parameters that users can tune to yield ef-

fective contention reductions.

3. Tuning and Overhead Analysis

The multi-core system used in our experiment has eight

Dual-Core AMD Opteron processors (16 processors in

total). The system has 32GB of physical memory. We

chose four client-side benchmarks: eclipse, hsqldb, luse-

arch, and xalan from the DaCapo suite [7]3. We did not

include any single-threaded benchmark because our pro-

posed contention-aware policy is not activated when running

single-threaded Java programs. We also chose three server-

side benchmarks: jbb2005 (from SPEC), jAppServer2004

(from SPEC), and ECPerf (from Sun Microsystems). It is

worth noting that we initially set the size of Java heap to

64MB and allowed it to freely grow up to 2GB as needed by

the applications.

We executed the five stand-alone benchmarks (eclipse,

hsqldb, lusearch, xalan, and jbb2005) on the above system

with unmodified HotSpot and unmodified kernel (from now

on, referred to as default) and the CA-Scheduler-enabled

(from now on, referred to as CASe). As mentioned earlier,

HotSpot is released as part of the OpenJDK 7 project and

the Linux kernel is Version 2.6.20.

For jAppServer2004 and ECPerf, we set up a real-world

Java application server environment. The environment con-

sists of three machines: application server, database server,

and client. These machines are connected through an inter-

nal private network to minimize latencies due to network

congestion. The application server is the above system con-

figured to run default and CASe. The server machine is also

configured with no other major services (e.g., DNS, mail,

database) to create a real-world scenario where the applica-

tion server is not likely to be used for other major services.

The database server is a Sun Blade with dual 2GHz AMD

3 The version of DaCapo benchmarks that we used is dacapo-2006-10.



Benchmark Workload size Number of Shared Number of globally Contention per object

threads objects contended objects average min max

eclipse (DaCapo) large 10 58 2 3 2 12

hsqldb (DaCapo) large 400 532 1 79 2 1020

lusearch (DaCapo) large 64 248 2 13 1 121

xalan (DaCapo) large 16 404 3 12 1 513

jbb2005 (SPEC) 16 warehouses 16 2371 0 121 0 413

jServer2004 (SPEC) Tx=20 2848 11130 0 301 0 421

ECPerf Tx=20 1368 10456 0 271 0 357

Table 1. Contention characteristic of each benchmark. Note that the column “Contention per object” reports the actual

occurrences of contention observed in HotSpot.

Opteron processors with 2GB of memory; it runs Fedora

Core 2 Linux. The client machine is a single-processor 1.6

GHz Athlon with 1GB of memory.

We executed each application on default five times and

on CASe five times. We then compared the best run from

CASe to the best run from default. It is worth noting that

when the best run of CASe is compared to the worst run of

CASe and the best run of default to the worst run of default,

the performance differences range from 0.1% to 12.9% in

all benchmarks. The biggest difference (12.9%) occurs when

xalan is executed using two processors in CASe. The biggest

difference in default (11.1%) occurs when lusearch is exe-

cuted with two processors. The average performance differ-

ence when 1, 2, 4, 8, and 16 processors are utilized is 5.1%.

Interestingly, as the number of processors becomes larger

than two (i.e., utilizing 4, 8, and 16 processors), the aver-

age performance difference reduces to 3.3%. In addition, we

found the differences in throughput performance of server-

side benchmarks to be less than 5%. This is because these

benchmarks run for a long time (tens of minutes to a few

hours), resulting in more consistent overall performances.

3.1 Benchmark Characteristics

Table 1 describes each benchmark and the possible sources

of contention obtained through source code inspection. The

numbers of threads generated by these benchmarks vary

significantly. In addition, the numbers of shared objects and

contended objects also vary significantly. Also note that we

report the number of objects that are accessible by multiple

threads (shared objects in the fourth column). However, not

all of these objects experience contention; therefore, we see

that there are shared objects experiencing no contention in

jbb2005, jAppServer2004, and ECPerf.

eclipse (DaCapo) is a simplified integrated development

environment (IDE) without displaying GUI. It performs a

subset of five tasks in IDE (setting up workspace, creating

projects, and typing hierarchy tests, AST tests, search tests).

In our experiment, we configured eclipse to execute the full

set of tasks. Since these tasks are independent from each

other, they only have a few occurrences of resource con-

tention [7].

hsqldb (DaCapo) is an SQL relational database engine writ-

ten in Java. Dacapo provides a modified benchmark pro-

gram JDBCBench to test an hsqldb database that emulates a

transaction processing system (TPS) [7]. The TPS database

has 4 tables: branch, teller and account and history. In our

experiments, we ran 400 client threads. Each thread per-

forms 50 transactions. Each transaction randomly chooses

an account, teller or branch and updates its balance. We ex-

pected that threads, which tend to update the same table,

would have more contention than threads updating different

tables. One major shortcoming of hsqldb is that while the

database server is multithreaded, the core database engine is

not. Thus, requests are serviced sequentially [17].

lusearch (DaCapo) is a tool that performs a text search of

keywords over the Shakespeare Corpus (42 documents) [7].

It creates multiple threads to search these documents in par-

allel. It also maintains a hit queue, which ranks the docu-

ments by the order of keyword hits. Each thread updates

the hit queue during search. Contention occurs when mul-

tiple threads update the hit queue concurrently. In our exper-

iments, we ran 64 threads.

xalan (DaCapo) is an XSLT processor for transforming

XML documents [7]. It pushes some pre-selected files to a

work queue and generates several threads to parse these files

independently. Once a thread has completed transformation

of a XML file, it removes the file from the work queue.

Contention occurs when threads update the work queue si-

multaneously. In our experiments, we modified the number

of pre-selected files to 64 and the number of work threads to

16.

jbb2005 (SPEC) is a Java-based benchmark that models

a wholesale company, with warehouses that serve a num-

ber of districts. Each warehouse is implemented as a sim-

ple database by using HashMaps or TreeMaps. Each thread

simulates a customer which accesses a fixed warehouse for

the lifetime of the experiment [30]. Given the nature of the

benchmark, threads accessing the same warehouse should

have more contention than threads accessing different ware-

houses. In our experiments, we used 16 warehouses, result-

ing in 16 active threads.



jAppServer2004 (SPEC) is a standardized benchmark for

testing the performance of Java Application Servers. It em-

ulates an automobile manufacturing company and its asso-

ciated dealerships [29]. It complies with the J2EE 1.3 speci-

fication. We ran it on JBoss4 and used MySQL5 as database

server. The level of workload can be configured by transac-

tion rate (Tx). This workload stresses the ability of the Web

and EJB containers to handle the complexities of memory

management, connection pooling, passivation/activation,

caching, etc. The throughput of the benchmark is measured

in JOPS (job operations per second). We set Tx to 20, which

generates 2848 threads. These threads will intensively con-

tend on sockets, cache pools, and databases.

ECPerf was introduced by Sun Microsystems in 2001. It

consists of a specification and a benchmarking kit, which

is designed specifically to test and measure performance and

scalability of J2EE application servers. ECPerf does not pro-

vide a workload related to web-tier and Java Message Ser-

vice (JMS). Similar to jAppServer2004, the level of work-

load can be configured by transaction rate (Tx) [31]. The

throughput of the benchmark is measured in JOPS. We set

Tx to 20, which generates 1368 threads. Notice that the

number of threads created by ECPerf is roughly half of the

number of threads created by jAppServer2004 using a simi-

lar workload setting. These threads also contend on sockets,

cache pools, and databases.

3.2 Performance Tuning

The proposed system introduces several parameters that

must be tuned to achieve a balance between good perfor-

mance and low overhead. In this section, we study the effects

of these parameters on performance and clustering accuracy.

Similarity Threshold: As a reminder, similarity between

two threads is used as a metric to determine if two threads

are likely to contend. Its value is a normalized product of two

conVectors, each of which is a counting vector that indicates

the number of monitor entries perform by a particular thread

on each shared object. Because the JVM derives conVectors

from processing seVectors, the size of seVector (s) can have

a profound effect on the clustering accuracy and runtime

overhead.

First, we investigated the effects of changing the values of

s and simThreshold on the overhead to record synchroniza-

tion events, form clusters, and generate a thread-to-processor

mapping plan. We conducted our study on three benchmarks

representing three distinct workloads and contention behav-

iors: eclipse (representative of desktop application with 10

threads and very few occurrences of contention), jbb2005

(representative of small server application with 16 threads

and moderate contention), and jAppServer2004 (representa-

4 See www.jboss.org for more information.
5 See www.mysql.com for more information.

tive of large server applications with thousands of threads

and heavy contention).

Figure 3 presents the execution overhead inside the JVM

(i.e. overhead for clustering and generating thread-to-CPU

mapping plan) over a wide range of seVector size (s) and

simThreshold. Note that the overall overhead (i.e., overheads

of JVM and kernel) is presented in Section 3.3. We only used

four simThreshold values (i.e., 0.1, 0.2, 0.3, and 0.4) because

our experimental result reveals that the similarity between

two threads rarely exceeds 0.45.

The graph shows an expected trend of increasing over-

head with larger s. Our experiment shows that the overhead

is generally less than 2% of the overall execution time when

s is less than or equal to 2048. Note that in eclipse, the over-

head no longer increases when s is greater than 2048. This

is because the total number of monitor entry events of each

thread in eclipse is less than 2048. Also, it is worth notic-

ing that varying simThreshold has very little effect on the

overhead in eclipse, but has significant effects on jbb2005

and jAppServer2004. In subsequent experiments, we set s to

2048 based on the results of this study.

Another observation is that smaller simThreshold yields

less computational overhead under a fixed value of s. With

smaller simThreshold, threads are more likely to be clus-

tered. Therefore, fewer clusters will be formed. Since the

number of clusters determines the overhead of the processor

assignment, fewer clusters result in smaller overhead.

Next, we investigated the effects of varying the values of

s and simThreshold on clustering accuracy. To conduct this

investigation, we created an oracle for each benchmark by

manually forming clusters using a combination of a brute-

force approach and a source code investigation to establish

the contention characteristics. By inspecting the source code,

we discovered that we can cluster threads based on task

in eclipse. Therefore, threads that are created to perform a

certain task are assigned to the same cluster. For jbb2005,

we observed that threads participating in a transaction also

share resources. Thus, we clustered threads based on the

frequency with which they accessed each warehouse. For

jAppServer2004 and ECPerf, we observed that threads with

the same functionality share a large number of resources;

thus, they are clustered together.

Next, we built a relationship matrix, M of the manually-

formed clusters. M is a matrix of size n where n is number

of threads. M is generated as follows: M [i][j] is 1 (1⇐ i,j

⇐ n) if thread i and j are in the same cluster, indicating an

inclusive relationship. Otherwise, M [i][j] is 0, denoting an

exclusive relationship.

In a similar fashion, we constructed another relationship

matrix, M1, that is based on the clustering result of our pro-

posed algorithm. Once the two matrices were constructed,

we calculated the accuracy of our clustering algorithm using

the following formula:
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Figure 3. Analysis of runtime overhead of CA-Scheduler

inside the JVM

accuracy =
1

C2
n

n
∑

i=1

n
∑

j=i+1

Aij ,

where Aij =

{

1, when M [i][j] = M1[i][j]
0, when M [i][j] 6= M1[i][j]

Aij indicates whether the relationship (i.e., inclusive or

exclusive) between thread i and j is the same in M and M1.

C2
n refers to the total number of thread pairs, which is equal

to n × (n−1)
2 . Therefore, accuracy indicates whether M1

is similar to M . In this scheme, the maximum accuracy is

1, meaning that the two matrices, M and M1 are exactly the

same. Figure 4 shows the accuracy over wide-ranging values

of s and simThreshold.

ciThreshold: In this experiment, the values of s and simThresh-

old are set to 2048 and 0.3, respectively. As a reminder,

ciThreshold is used to determine whether a cluster should

be classified as strong-contention or weak-contention. Thus,

it can have a profound effect on our system’s ability to per-

form load balancing. If we set ciThreshold to 1.0, all clusters

are classified as weak-contention, meaning that every clus-

ter can be split to achieve a good balance. However, such

action can result in a much higher number of inter-processor

contention. On the other hand, if we set ciThreshold to 0,

all clusters are categorized as strong-contention, resulting in

less effective load balancing. Figure 6 depicts the effect of

varying ciThreshold values on the overall performance and

contention.

3.3 Discussion

The results of our study indicate that a good balance be-

tween high clustering accuracy (70% to 80% in all three

benchmarks) and low clustering overhead (less than 2% in

all three applications) can be achieved if we set s to 2048 and

simThreshold to 0.3. Our study of ciThreshold also shows

that carefully selecting the value of ciThreshold can improve

the overall performance and reduce contention. The results

also reveal that the optimal values of ciThreshold can vary

across applications. For example, the value of ciThreshold

that allows the CA-Scheduler to yield its highest perfor-

mance and reduce the most contention is 0.4 for eclipse and

jAppServer2004 and 0.2 for jbb2005. However, the value of

0.4 is a good compromise, as it still results in a very good

performance improvement for jbb2005, but a slightly lower

contention reduction than the optimal value.

We then conducted an analysis of the overall execution

overhead. We set the values of s to 2048, simThreshold to

0.3, and ciThreshold to 0.4. As shown in Figure 5, the CA-

Scheduler only incurred a maximum of 3.5% execution over-

head (lusearch). The investigation also reveals that recoding

synchronization events and building conVectors account for

83% to 92% of the entire overhead.



seVector size (s)

P
e

rc
e

n
ta

g
e

 o
f 
s
im

ila
ri
ty

 b
e

tw
e

e
n

 M
 a

n
d

 M
1

(a) eclipse

simThreshold = 0.1

simThreshold = 0.2

simThreshold = 0.3

simThreshold = 0.4

seVector size (s)

P
e

rc
e

n
ta

g
e

 o
f 
s
im

ila
ri
ty

 b
e

tw
e

e
n

 M
 a

n
d

 M
1

(b) jbb2005

seVector size (s)

P
e

rc
e

n
ta

g
e

 o
f 
s
im

ila
ri
ty

 b
e

tw
e

e
n

 M
 a

n
d

 M
1

(c) jAppServer2004

Figure 4. Accuracy analysis of the clustering algorithm em-

ployed in CA-Scheduler

Events recording

Figure 5. Overall runtime overhead of CA-Scheduler

4. Performance Evaluation

In this section, we investigate the effect of the CA-Scheduler

on reducing the number of contention and improving overall

performance. We also compare the CPU-scalability of CASe

with that of default. We set s to 2048, simThreshold to 0.3,

and ciThreshold to 0.4.

4.1 Contention Reduction

In this study, we compare the number of contention be-

tween CASe and default. Furthermore, we create two ver-

sions of CASe: Version 1 includes clustering to address only

interprocessor contention, and Version 2 includes clustering

and Critical Section First (CSF) scheduling to address both

interprocessor- and intraprocessor-contention.

CASe-V1 can reasonably reduce the number of con-

tention in four out of seven applications. We can achieve

these reductions because our approach assigns threads,

which contend heavily, to the same processor. This as-

signment reduces the number of inter-processor contention

(ranging from 10% to 29%). With the CSF scheduling

strategy (CASe-V2), our approach can also reduce intra-

processor contention. As a result, the overall reductions

range from 15% to 45%. This result indicates that intra-

processor contention is a significant factor when the number

of threads exceeds the number of processors (400 threads in

hsqldb to nearly 3000 threads in jAppServer2004).

For the remaining three applications, our approach achieves

a very small reduction because contention among threads in

these applications is rare. For example, xalan only uses two

synchronized methods to update the work queue (adding or

removing an XML transformation task). The execution time

of these methods is also very short. Therefore, contention

rarely occurs. As a result, our approach only reduces the

number of contention by 3%.
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Figure 6. Investigating the effects of ciThreshold on perfor-

mance
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Figure 7. Contention reductions over default

4.2 Overall Performance Improvement

In eclipse, lusearch, hsqldb and xalan, performance is mea-

sured by execution time. In jbb2005, jAppServer2004 and

ECPerf, performance is measured in jobs per second (JOPS).

Figure 8 shows the performance improvements of CASe-V1

and CASe-V2 over default.

As shown in Figure 8, eclipse suffers a 3% degradation

in performance. This is because our approach can achieve

a very small contention reduction in eclipse. Therefore, the

degradation of 3% is mainly caused by the overhead incurred

by the CA-Scheduler. In lusearch and xalan, we do not

achieve any noticeable performance improvement. Again,

this is due to small numbers of contention in these two

benchmarks.

For the remaining four benchmarks, performance im-

provements of CASe-V2 range from 7% to 15%. The mag-

nitude of performance gain reflects its ability to reduce the

number of contention. For example, in jAppServer2004,

CASe-V2 is able to improve performance by 15% by elim-

inating 45% of the contention. In addition, CSF scheduling

decreases the time that a thread must spend waiting to enter

critical sections.

So far, we have measured execution times and through-

put performances using all 16 processors. Next, we inves-

tigate the CA-Schedulers ability to perform with a vary-

ing number of processors. We report performance improve-

ment in terms of speedup with respect to the performance

of default with one core [22]. For example, the speedup

of the CA-Scheduler with 16-core in jAppServer2004 is
throughputCA−16

throughputdefault−1

, where throughputCA−16 represents

the throughput performance of jAppServer2004 running on

CASe-V2 with 16 processors and throughputdefault−1 rep-

resents the throughput performance of jAppServer2004 run-

ning on default with one processor core.
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Figure 8. Performance improvements over default

We maintained the same workload while increasing the

number of CPU cores. After we added a CPU, we mea-

sured the performance of each application. As shown in Fig-

ure 9, CASe-V2 can perform worse than default when the

number of cores is small. This is because a smaller number

of cores reduces contention. Although CASe-V2 performs

worse with one core, its performance improves quickly and

surpasses that of default, as the number of cores increases

in five out of seven applications. Two exceptions are eclipse

and xalan. In these two benchmarks, the CA-Scheduler is

ineffective due to a small number of contention.

In jbb2005, the maximum throughput of default is achieved

(58839 JOPS) when all 16 cores are used. CASe-V2 can

achieve a similar throughput by using only 12 cores. Be-

cause this application has only 16 active threads, there is

a one-to-one mapping between threads and CPUs, yielding

maximum parallelism. This result shows that CASe-V2 uti-

lizes CPUs much more efficiently than default in jbb2005.

This preliminary result indicates that it is possible to achieve

better CPU utilization by favoring contention reduction over

increasing CPU cores.

4.3 CPU Scalability

In this section, we compare the CPU-scalability of the CA-

Scheduler (using CASe-V2) with default. Note that CPU-

scalability refers to an increase in performance (i.e., an in-

crease of throughput or a decrease in execution time) with

respect to an increase in the number of CPU cores.

As shown in Figure 9, the speedups of most benchmarks

begin to saturate after the number of CPU cores reaches a

certain number. For example, in eclipse, peak performance

is achieved at five or more CPUs. This is because there are

five independent tasks (10 threads in total), which seldom

contend. Therefore, there is no significant performance gain

after five CPU cores. In jbb2005, the throughput begins

to saturate at 12 cores. Between 12 cores to 16 cores, the

throughput improvement is less dramatic.

As can be seen in Figure 9, the CA-Scheduler improves

CPU scalability in five out of seven benchmarks. We also

discovered an interesting scalability behavior in hsqldb,

jAppServer2004, and ECPerf when default is used. In these

three applications, performance actually degrades when

more CPUs are added to the system. In hsqldb, a smaller

number of CPUs limits the number of requests the system

can take at one time. As we add more CPUs, the additional

computation power is used mainly to take more requests.

This does not help with servicing queries because the core

database engine is single-threaded [17] and must share the

processors with the rest of the threads. Thus, we see reduced

performance in the default system when the number of pro-

cessors is 12 or more.

On the other hand, CASe-V2 assigns a higher priority to

threads in critical sections. Because the core engine handles

requests in a serialized fashion, CASe-V2 schedules the core

engine more frequently than other threads. This means that

in a single core system, threads taking requests are less

frequently scheduled. As we add more CPUs to the system,

one processor is mostly used by the core engine, and the

remaining processors are used to accept concurrent requests

and queue them up for the core engine. As a result, CASe-

V2 scales well with more processor cores and eventually

outperforms the default system once the number of CPUs

is 14 or more.

In jAppServer2004 and ECPerf, CASe-V2 shows modest

improvements in the scalability over default, which slightly

degrades performance with more CPU cores. Because the

numbers of threads in these two applications are very large

(several hundred concurrent threads with thousands created

throughout execution), increasing the number of processors

from 1 to 16 modestly improves parallelism in these two

applications. However, it appears that reducing contention,

as in the case of CASe-V2, allows the system to scale in

spite of a modest increase in parallelism.

5. Other Considerations

Security: In our current implementation, we have not incor-

porated any security measures to proactively prevent other

threads from registering with the kernel. Therefore, it is pos-

sible for native threads, as an example, to register with the

kernel and to be scheduled based on the contention-aware

policy. However, it is not possible for unregistered threads

to simply invoke any kind of system call to renew execution

quanta, as the renewal process is done automatically by the

kernel. One possible security measure is to make the regis-

tration process more secure (e.g., encrypted policy configu-

ration files, authentication of all processes trying to register,

and tighter control from system administrators).



(a) eclipse (b) hsqldb (c) lusearch

(d) xalan (e) jbb2005 (f) jAppServer2004

default

CASe-V2

(g) ECPerf

Figure 9. Comparing Performance and CPU-scalability of CASe-V2 with default

Incremental Migration: The current implementation of

the thread migration mechanism assigns thread-to-CPU in

a stop-the-world fashion, meaning that all Java threads must

stop executing during this process. Because migration sel-

dom occurs, its overhead appears to be small when it is

averaged over the entire execution of a program. However,

we found that each migration causes the application server

benchmarks to exhibit noticeable pauses of about 500 mil-

liseconds to 1 second. As part of future work, we plan to

make the migration process incremental to reduce the length

of each pause. We expect that such an approach will make

pauses less noticeable. However, it will also result in higher

migration overhead due to additional bookkeeping activi-

ties and longer delays before the approach can reap its full

benefits.

Portability: It is also possible to implement our scheduler

as a user-level thread management package. One approach

is to map a cluster to a kernel thread and then rely on the

user-level thread manager to multiplex threads belonging

to a cluster. However, it is likely that such an approach

would result in a longer thread waiting time. For example, if

three actual time quanta are needed for a thread to complete

executing in a critical section, in our current approach, the

thread can get through this critical section in one turn on

the CPU (2 renewals). In the user-level thread approach,

the thread may be suspended by the kernel before it can

get through the critical section, resulting in more convoying

and longer waiting time. On the other hand, the user-level

thread approach is more portable than the kernel-level thread

approach.



Supporting Native Threads: Currently, our prototype only

works with Java. However, integrating the proposed cluster-

ing and planning mechanism to languages such as C and

C++ should be quite straightforward. For example, similar

clustering and thread-to-CPU mapping mechanisms can be

included in threading libraries such as pthread.

6. Related Work

The goal of this work is very similar to many other works

that attempt to make thread-level parallelism more efficient

in multiprocessor systems. Our approach is unique because

it achieves the same goal through operating system augmen-

tation instead of (i) relying on programmers to provide lock-

free code (e.g., lock-free data structures [24]); (ii) employing

runtime systems to provide lock-free execution (e.g., hard-

ware and software transactional memory [16, 14]); and (iii)

utilizing hardware to assist with lock-free execution (e.g.

speculative lock elision [23]). One common characteristic of

these techniques is that they treat scheduling decisions made

by the kernels as “a fact of life.” Therefore, these three ap-

proaches are designed to “cope” with contention that results

from these scheduling decisions. Our approach differs from

these three techniques in that it first attempts to proactively

improve the scheduling, so that the execution sequence ex-

periences few occurrences of lock contention. Any unavoid-

able contention is then managed using existing approaches.

Thus, our proposed work is orthogonal but complementary

to these three techniques.

In addition, recent emergence of transactional memory

also promises less effort by programmers to coordinate par-

allelism [13]. Currently, most transactional memory systems

are tuned according to the conventional wisdom that con-

flicts rarely occur, and thus aborting memory transactions, a

typically more expensive operation, should rarely take place

[16, 21]. However, this wisdom has not been verified in large

multithreaded applications such as Java application servers

with hundreds to thousands of concurrently running threads

manipulating unstructured data (e.g. lists, trees, graphs, hash

tables). It is very likely that applications wanting to utilize

transactional memory have to be partially rewritten, or at the

very least, recompiled [8]. Thus, such restrictions limit the

applicability of transactional memory in currently deployed

software. As shown in this paper, our proposed solution can

work well with large application servers. Moreover, our so-

lution allows existing applications to immediately take ad-

vantage of its benefits without rewriting the application code.

There have been several research efforts that attempt to

reduce contention through more favorable scheduling. Work

by Tucker and Gupta suggests that one way to prevent early

preemption of processes in critical sections is to make the

number of runnable processes the same as the number of

processors. This effectively eliminates the need for preemp-

tion [33]. Because they only evaluated their work using

highly parallel applications, it is unclear how such an ap-

proach would perform in large multithreaded applications

with a high frequency of contention.

Work by Anderson et al. [2] proposed scheduler activa-

tions to address the issue that a user-level thread is blocked

or preempted when it is in critical section. They adopted a

solution based on recovery. That is, if a thread has been pre-

empted in a critical section, the thread is allowed to tem-

porarily continue until it exits the critical section. Marsh et

al. [19] proposed a set of kernel mechanisms and conven-

tions to grant first-class to user-level threads. Their scheme

provided coordination between scheduling and synchroniza-

tion to reduce waiting time caused by lock contention. Sim-

ilarly, our work employs a time-slice renewing mechanism

to reduce contention. However, our approach also employs

clustering and dynamic prioritization to further reduce wait-

ing time.

Work by Tucker et al. [34] introduces a scheduling con-

trol mechanism to provide “limited control over the schedul-

ing of a lightweight process” in Solaris operating system.

Function schedctl start is used to provide a hint to the kernel

that preemption of a lightweight process should be avoided.

Function schedctl stop is used to remove the hint. One com-

mon use of this mechanism is to “block preemption” while a

thread is holding a lock. Because we implemented our mech-

anism in Linux, such feature is not available to us. However,

we can see that the availability of such feature can support

the implementation of the proposed CSF scheduling policy

by utilizing blocking preemption instead of utilizing our cur-

rent technique of increasing execution priority.

Rossbach et al. [25] presented a variant of Linux called

txLinux to support hardware transactional memory. TxLinux

provided a transaction-aware scheduler that takes advantage

of processes’ transaction states to mitigate the effects of

high contention. The scheduler makes scheduling decisions

or assigns priority based on the current transaction state.

Similarly, our approach prioritizes threads based on their

lock usage.

Tam et al. [32] proposed a clustered scheduling scheme

to reduce high-latency due to cross-chip sharing. They used

a similar approach to cluster threads that heavily share data.

Their work leveraged information available in the hardware

performance monitoring to guide thread clustering to reduce

the cost of inter-chip cache snooping in chip-multiprocessor

systems. On the other hand, our work exploits runtime infor-

mation from high-level language virtual machines to guide

clustering and reduce lock contention. With the CSF sched-

uler, our work also reduces the number of intra-processor

contention.



7. Conclusions

Lock contention is a major bottleneck that not only af-

fects performance, but can also affect scalability of mul-

tithreaded Java applications. To reduce the occurrences of

lock contention, we introduced a Contention-Aware sched-

uler (CA-Scheduler) that maps threads sharing the same

lock-protected resources to the same processor.

In addition, we introduced a critical-section-first schedul-

ing strategy, which considers lock usage as a scheduling

criterion to further reduce thread waiting time due to lock

contention. Our experimental results show that the CA-

Scheduler can achieve significant performance improvement

in applications with heavy lock-contention (up to 15%) with-

out incurring significant runtime overhead (3.5% of overall

execution time).
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