MMWC: A Modeling Methodology for Warehouse-scale Computers

MapReduce and Hadoop | Resource Provisioning and Performance Evaluation | Benchmarks | Research Groups | Conferences & Journals | Software Tools

[ Keywords List: MapReduce | Performance Analysis | WorkLoad | Simulation | Heterogeneous Environments | Cloud Computing | Hadoop | Optimization | Efficiency | Benchmark | Multicore | Multiprocessor | Cost | Resource Provisioning ]

    Research Papers: MapReduce and Hodoop

  1. J. Dean, and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Sixth Symposium on Operating System Design and Implementation (OSDI '04), December, 2004.

  2. V. Vijayalakshmi, A. Akila, and S. Nagadivya. The Survey on MapReduce. International Journal of Engineering Science and Technology (IJEST). Vol. 4, pp.3335-3342 July, 2012.

  3. B. Li, E. Mazur, Y. Diao, A. Mcgregor, and P. Shenoy.SCALLA: A Platform for Scalable One-Pass Analytics Using MapReduce. ACM Trans. Database Syst. 37, 4, December, 2012.

  4. D. Jiang, B. C. Ooi, L. Shi, S. Wu. The Performance of MapReduce: An In-depth Study. Proceedings of the VLDB Endowment, Vol. 3, No. 1, September, 2010.

  5. Y. Chen, A. Ganapathi*, R. Griffith, R. Katz. The Case for Evaluating MapReduce Performance Using Workload Suites. Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS). PP. 390-399 July, 2011.

  6. G. Wang, A. R. Butt, P. Pandey, K. Gupta. Using Realistic Simulation for Performance Analysis of MapReduce Setups. LSAP '09 Proceedings of the 1st ACM workshop on Large-Scale system and application performance. PP. 19-26, 2009.

  7. M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving MapReduce Performance in Heterogeneous Environments. 8th USENIX Symposium on Operating Systems Design and Implementation. pp.29-42 , December, 2008.

  8. A. Losup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, D. H. J. Epema. Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing. Parallel and Distributed Systems, Vol. 22, PP. 931-945 June, 2011.

  9. S. Kavulya, J. Tan, R. Gandhi*, and P. Narasimha. An Analysis of Traces from a Production MapReduce Cluster. Cluster, Cloud and Grid Computing (CCGrid). PP. 94-103 May, 2010.

  10. J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and X. Qin. Improving MapReduce Performance through Data Placement in Heterogeneous Hadoop Clusters. Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW). PP. 1-9 April, 2010.

  11. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis. Data Engineering Workshops (ICDEW). PP. 41-51, March 2010.

  12. H. Herodotou, S. Babu. Profiling, What-if Analysis, and Cost-based Optimization of MapReduce Programs. Proceedings of the VLDB Endowment. 2011.

  13. J. Tan, X. Meng, L. Zhang. Performance Analysis of Coupling Scheduler for MapReduce/Hadoop. INFOCOM, 2012 Proceedings IEEE. PP. 2586-2590, March 2012.

  14. M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman. Exploring MapReduce Efficiency with Highly-Distributed Data. Proceedings of the second international workshop on MapReduce and its applications. PP. 27-34, 2011.

  15. K. Arumugam, Y. S. Tan, B. S. Lee, and R. Kanagasabai. Cloud-enabling Sequence Alignment with Hadoop MapReduce: A Performance Analysis. 2012 4th International Conference on Bioinformatics and Biomedical Technology, Vol. 29, 2012.

  16. S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu. MRSim: A Discrete Event based MapReduce Simulator. Fuzzy Systems and Knowledge Discovery (FSKD), Vol. 6, PP. 2993-2997 Aug, 2010.

  17. T. W. Wlodarczyk, Y. Han, C. Rong. Performance Analysis of Hadoop for Query Processing. Advanced Information Networking and Applications (WAINA), PP. 507-513, March 2011.

  18. A. Verma, L. Cherkasova, R. H. Campbell. Resource provisioning framework for MapReduce jobs with performance goals. Middleware '11 Proceedings of the 12th International Middleware Conference. PP. 160-179, 2011.

  19. Z. Fadika, E. Dedo, M. Govindaraju, L. Ramakrishnan. Benchmarking MapReduce Implementations for Application Usage Scenarios. Grid Computing (GRID), PP. 90-97, Sept. 2011.

  20. K. Lee, Y. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel Data Processing with MapReduce: A Survey. ACM SIGMOD, Vol. 40, PP. 11-20, December 2011.

  21. L. Cherkasova, Performance Modeling in MapReduce Environments: Challenges and Opportunities. Proceedings of the 2nd ACM/SPEC International. PP. 5-6, 2011.

  22. R. Ghosh, F. Longo, V. K. Naik, K. S. Trivedi. Modeling and performance analysis of large scale IaaS Clouds. Future Generation Computer Systems, Vol 29, PP. 126-1234, 2013.

  23. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein. MapReduce Online. 2010.

  24. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor Systems. High Performance Computer Architecture, HPCA. PP. 13-24, Feb. 2007.

  25. W. Shih, S. Tseng, C. Yang. Performance Study of Parallel Programming on Cloud Computing Environments Using MapReduce. Information Science and Applications (ICISA), pp. 1-8, April 2010.

  26. H. Herodotou, F. Dong, S. Babu. MapReduce Programming and Cost-based Optimization? Crossing this Chasm with Starfish. Proceedings of the VLDB Endowment, Vol. 4, Sept. 2011.

  27. A. Abello, J. Ferrarons, O. Romero. Building Cubes with MapReduce. Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP. PP. 17-24, 2011.

  28. M. Cardos, P. Narang, A. Chandra, H. Pucha, A. Singh. STEAMEngine: Driving MapReduce Provisioning in the Cloud. Computer Science & Engineering. Sep. 2010.

  29. J. Ekanayake. Architecture and Performance of Runtime Environments for Data Intensive Scalable Computing. 2010.

  30. Hadoop: The Definitive Guide, 1st ed., O'Reilly Media Inc., Sebastopol, CA, 2009.

  31. MapReduce Design Patterns, 1st ed., O'Reilly Media Inc., Sebastopol, CA, 2012.

  32. Distributed Systems Principles and Paradigms, 2nd ed., Person Education Inc., Upper Saddle River, NJ, 2007.

  33. Hadoop MapReduce Cookbook, 1st ed., Packt Publishing Ltd., Birmingham, UK, 2013.

  34. Hadoop In Practice, Manning Publications Co., Shelter Island, NY, 2012.

    Research Papers: Resource Provisioning and Performance Evaluation

  1. A. Agarwal, Performance Tradeoffs in Multithreaded Processors, IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 5, pp. 525-539, Sept. 1992.

  2. A. Alameldeen and D. Wood, IPC considered harmful for multiprocessor workloads, IEEE Micro, 26(4):8, 2006.

  3. J. H. Anderson, J. M. Calandrino, and U. C. Devi, Real-time Scheduling on Multicore Platforms, Proc of the 12th IEEE Real-Time and Embedded Technology and Application Symposium, 2006.

  4. L. Barroso, J. Dean, and U. Holzle, Web search for a planet: The google cluster architecture, IEEE Micro, 23(2), 2003.

  5. L. A. Barroso and U. Holzle, The case for energy-proportional computing,IEEE Computer, 40:33-37, December 2007.

  6. S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay, High-Performance Throughput Computing, IEEE Micro, pp. 32-45, 2005.

  7. H. Che, C. Kumar, and B. Menasinahal, A Fast Latency Bound Estimation Algorithm for a Multithreaded Network Processor, in Proceedings of the 18th IASTED International Conference on Parallel and Distributed Computing and Systems, Nov. 2006.

  8. H. Che, C. Kumar, and B. Menasinahal, Fundamental Network Processor Performance Bounds, in Proc. of the 4th IEEE International Symposium on Network Computing and Applications (NCA05), August 2005.

  9. H. Che and S. Q. Li, Fast Algorithms for Measurement-Based Traffic Modeling, IEEE Journal on Selected Areas in Communications, Vol. 16, No. 5, pp. 612-625, June 1998.

  10. H. Che, W. Su, C. Lagoa, K. Xu, C. Liu, and Y. Cui, An Integrated, Distributed Traffic Control Strategy for the Future Internet, in Proc. of the ACM SIGCOMM INM Workshop, May. 2006.

  11. H. Che, Y. Tung, and Z. Wang, Hierarchical Web Caching Systems: Modeling, Design, and Experimental Results, IEEE Journal on Selected Areas in Communications, vol. 20, No. 7, pp. 1305- 1314, 2002.

  12. H. Che, Z. Wang, K. Zheng, and B. Liu, DRES: Dynamic Range Encoding Scheme for TCAM Coprocessors, IEEE Transactions on Computers, Vol. 57, No. 7, pp. 902-915, July 2008.

  13. H. Che, Y. Wang, and Z. Wang, A Rule Grouping Technique for Weight-Based TCAM Coprocessors, in the Proceedings of IEEE Hot Interconnects, 2003.

  14. J. Chen, G. Soundararajan, and C. Amza, Autonomic Provisioning of Backend Databases in Dynamic Content Web Servers, in Proc. IEEE Int'l Conf. Autonomic Computing, 2006.

  15. X. E. Chen and T. M. Aamodt, A First-Order Fine-Grained Multithreaded Throughput Model, in Proc. of the 15th IEEE International Symposium on High-Performance Computer Architecture (HPCA), Feb. 2009.

  16. C. Dubach, T. M. Jones, and M. F. P. O'Boyle, Microarchitectural Design Space Exploration Using an Architecture-Centric Approach, in Proc. of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (Micro), Dec. 2007.

  17. L. Eekhout, Computer Architecture Performance Evaluation Methods, Morgan & Claypool publisher, 2012.

  18. S. Eyerman and L. Eeckhout, Probabilistic Job Symbiosis Modeling for SMT Processor Scheduling, Proc of the 15th edition of ASPLOS on Architectural support for programming languages and operating systems, pp. 91-102.

  19. A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, Throughput-Oriented Scheduling On Chip Multithreading Systems, Technical ReportTR-17-04.

  20. A. Fedorova, M. Seltzer, and M. D. Smith, A Non-Work-Conserving Operating System Scheduler for SMT Processors, in Workshop on the Interaction between Operating Systems and Computer Architecture, in conjunction with ISCA-33, 2006.

  21. A. Filali, A.S. Hafid, and M. Gendreau, Adaptive Resources Provisioning for Grid Applications and Services, Proc. IEEE Int'l Conf. Comm., 2008.

  22. R. E. Grant and A. Afsahi, A Comprehensive Analysis of OpenMP Applications on Dual-Core Intel Xeon SMPs, Proc. of the 2007 IEEE International Parallel and Distributed Processing Symposium, Mar. 2007.

  23. U. Hoelzle and L. A. Barroso, The Datacenter as a Computer:An Introduction to the Design of Warehouse-Scale Machines, Morgan and Claypool Publishers, 1st edition, 2009.

  24. Z. Huang, C. He, and J. Wu, On-Demand Service in Grid: Architecture Design, and Implementation, Proc. 11th Int’l Conf. Parallel and Distributed Systems (ICPADS ’05), 2005.

  25. E. Ipek, S. A. McKee, K. Singh, and R. Caruana, Efficient Architectural Design Space Exploration via Predictive Modeling, ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article No. 1, Jan. 2008.

  26. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt, QoS Policies and Architecture for Cache/Memory in CMP Platforms,”SIGMETRICS’07, June 12-16, 2007, San Diego, CA, USA.

  27. R. Iyer, CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms, in Proc of the 18th Annual International Conference on Supercomputing, 2004.

  28. Y. Jie, Q. Jie, and L. Ying, A Profile-Based Approach to Just-in-Time Scalability for Cloud Applications, Proc. IEEE Int'l Conf. Cloud Computing (CLOUD ’09), 2009.

  29. M. Ju, Performance Analysis and Resource Allocation for Multithreaded Multicore Processors, Ph.D. Dissertation, 2011.

  30. M. Ju, H. Jung, and H. Che, A Class of Queuing Network Models for Multithreaded Processors, in Proc. of the 23rd IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS2011), Dallas 2011.

  31. M. Ju, H. Jung, and H. Che, Performance Analysis Techniques for Multicore Processors, a book chapter in Scalable Computing and Communications: Theory and Practice, edited by K. Samee, L. Wang, and A. Zomaya, to be published by Wiley, 2013.

  32. M. Ju, H. Jung, and H. Che, Bottleneck Identification for Multithreaded Processors, in Proc. of the 23rd IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS2011), Dallas 2011.

  33. M. Ju, H. Jung, and H. Che, Performance Analysis Techniques for Multicore Processors, a book chapter in " Scalable Computing and Communications: Theory and Practice," by K. Samee, L. Wang, and A. Zomaya, to be published by Wiley 2012.

  34. M. Ju, H. Jung, and H. Che, A Performance Analysis Methodology for Multicore, Multithreaded Processors, to appear in IEEE Transactions on Computers, 2013.

  35. H. Jung, M. Ju, and H. Che, A Theoretical Framework for Design Space Exploration of Many- Core Processors, in Proc. of MASCOTS2011, August 2011.

  36. H. Jung, A Theoretical Framework for Design Space Exploration of Many-Core Processors, Ph.D. Dissertation, 2011.

  37. H. Jung, M. Ju, H. Che, and Z. Wang, A Fast Performance Analysis Tool for Multicore, Multithreaded Communication Processors, in Proc. of the 11th IEEE High Assurance Systems Engineering Symposium (HASE), Dec. 2008.

  38. Z. Kai, H. Che, Z. Wang, B. Liu, TCAM-based Distributed Parallel Packet Classification Algorithm with Range-Matching Solution, IEEE INFOCOM'05, March 2005.

  39. Z. Kai, H. Che, Z. Wang, B. Liu, TCAM-based Distributed Parallel Packet Classification Algorithm with Range-Matching Solution, IEEE Transactions on Computers, Vol. 55, No. 8, August 2006.

  40. S. Kanaujia, I. Papazian, J. Chamberlain, and J. Baxter, FastMP: A Multi-core Simulation Methodology, in Workshop on Modeling, Benchmarking, and Simulation, June 2006.

  41. Y. Kee and C. Kesselman, Grid Resource Abstraction, Virtualization, and Provisioning for Time-Target Applications, Proc. IEEE Int'l Symp. Cluster Computing and the Grid, 2008.

  42. K. Krikellas, M. Cintra, S. D. Viglas, Multithreaded Query Execution on Multicore Processors, Technical report, School of Informatics, University of Edinburgh, 2009.

  43. D. Kusic and N. Kandasamy, Risk-Aware Limited Lookahead Control for Dynamic Resource Provisioning in Enterprise Computing Systems, Proc. IEEE Int'l Conf. Autonomic Computing, 2006.

  44. C. Lagoa, H. Che, and B. Movsichoff, Adaptive Control Algorithms for Decentralized Optimal Traffic Engineering in the Internet, IEEE/ACM Transactions on Networking, vol. 12, No. 3, pp. 415- 428, June 2004.

  45. S. Lakshmanamurthy, K. Liu, Y. Pun, L. Huston, and U. Naik, Network Processor Performance Analysis Methodology, Intel Technology Journal, Vol. 6, No. 3, 2002.

  46. B. C. Lee and D. M. Brooks, Illustrative Design Space Studies with Microarchitectural Regression Models, in Proc. of the 13th IEEE International Symposium on High-Performance Computer Architecture (HPCA), Feb. 2007.

  47. C. Liao, Z. Liu, L. Huang, and B. Chapman, Evaluating OpenMP on Chip Multithreading Platforms, in Proc. of First International Workshop on OpenMP (IWOMP 2005), June, 2005.

  48. J. M. Luna and C. T. Abdallah, Control in Computing Systems: Part I, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD).

  49. J. M. Luna and C. T. Abdallah, Control in Computing Systems: Part II, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD)

  50. S. T. Maguluri, R. Srikant, and L. Ying, Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters, IEEE INFOCOM 2012.

  51. J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations IEEE MICRO'11, December 3-7, 2011.

  52. C. Madriles, P. López, J. M. Codina, E. Gibert, F. Latorre, A. Martínez, R. Martínez and A. González, Boosting Single-Thread Performance in Multi-core Systems through Fine-Grain Multi- Threading, ISCA 2009.

  53. J. Mars, L. Tang, and R. Hundt, Heterogeneity in“homogeneous warehouse-scale computers: A performance opportunity, IEEE Computer Architecture Letters, 2011.

  54. X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, Efficient Resource Provisioning in Compute Clouds via VM Multiplexing, ACM ICAC'10, June 7-11, 2010.

  55. K. Miyashita, K. Masuda, and F. Higashitani, Coordinating Service Allocation through Flexible Reservation, IEEE Trans.Services Computing, vol. 1, no. 2, pp. 117-128, Apr.-June 2008.

  56. G. Mariani, G. Palermo, V. Zaccaria, A. Brankovic, J. Jovic, and C. Silvano, A Correlation- based Design Space Exploration Methodology for Multi-Processor Systems-on-Chip, Proc. IEEE 7th Symp. Application Specific Processors, SASP'09, pp. 21-28, 2009.

  57. J. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal, Graphite: A Distributed Parallel Simulator for Multicores, in Proceedings of the 16th IEEE International Symposium on High-Performance Computer Architecture (HPCA'10), 2010.

  58. B. Movsichoff, C. Lagoa, and H. Che, Minimal Feedback Optimal Algorithms for Traffic Engineering in Computer Networks, IEEE/ACM Transactions on Networking, Vol. 15, No. 4, pp. 813-823, August 2007.

  59. B. Movsichoff, C. Lagoa, and H. Che, Decentralized Optimal Traffic Engineering in Connectionless Networks, IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, pp. 293-303, Feb. 2005.

  60. B. Movsichoff, C. Lagoa, and H. Che, A Sliding Mode Approach to Traffic Engineering in Computer Networks, Advances in Communication Control Networks Series : Lecture Notes in Control and Information Sciences , Vol. 308, edited by Sophie Tarbouriech, Chaouki Abdallah and John Chiasson, August 2004.

  61. M. Paolieri, E. Quinones, F. J. Cazorla, Timing Effects of DDR Memory Systems in Hard Real- Time Multicore Architectures: Issues and Solutions, ACM Transactions on Embedded Computing Systems, to appear 2013.

  62. P. Radojkovic, V. Cakarevic, M. Moreto, J. Verdu, A. Pajuelo, F. J. Cazorla, M. Nemirovsky, and M. Valero, Optimal Task Assignment in Multithreaded Processors, A Statistic Approach, in the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems, 2012.

  63. R. Saavedra-Barrera, D. Culler, and T. von Eicken, Analysis of Multithreaded Architectures for Parallel Computing, in the Proc. of the 2nd Annual ACM Symposium on Parallel Alogrithms and Architectures, pp. 169-178, 1990.

  64. A. Elvira, P. Arenas, S.Genaim, and G. Puebla. Automatic inference of upper bounds for recurrence relations in cost analysis, In Static Analysis, pp. 221-237. Springer Berlin Heidelberg, 2008.

  65. Al. Elvira, P. Arenas, S. Genaim, and G. Puebla. Cost relation systems: A language-independent target language for cost analysis, Electronic Notes in Theoretical Computer Science 248 (2009): 31-46.

  66. A. Elvira, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Experiments in cost analysis of Java bytecodeElectronic Notes in Theoretical Computer Science 190, no. 1 (2007): 67-83.

  67. A. Elvira, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of java bytecode, In Programming Languages and Systems, pp. 157-172. Springer Berlin Heidelberg, 2007.

  68. U. Fumiaki, K. Konda, R. Yokomori, and K. Inoue. Design and implementation of bytecode-based java slicing system, In Source Code Analysis and Manipulation, 2003. Proceedings. Third IEEE International Workshop on, pp. 108-117. IEEE, 2003.

  69. Wegbreit, Ben. Mechanical program analysis, Communications of the ACM 18, no. 9 (1975): 528-539.

  70. Albert, E., D. Alonso, P. Arenas, J. Correas, A. Flores, S. Genaim, M. Gómez-Zamalloa et al. Resource Analysis in the COSTA System, Resource 1 (2009).

  71. H. Che, B. Menasinahal, and C. Kumar. A Fast Network Processor Performance Analysis Approach.

  72. Ferdman, Michael, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds. ASPLOS, 2012.

  73. Sodan, Angela C., and Lei Lan. "LOMARC—Lookahead matchmaking for multi-resource coscheduling." In Job Scheduling Strategies for Parallel Processing, pp. 288-315. Springer Berlin Heidelberg, 2005.

  74. McIlroy, Ross, and Joe Sventek. "Hera-JVM: a runtime system for heterogeneous multi-core architectures." In ACM Sigplan Notices, vol. 45, no. 10, pp. 205-222. ACM, 2010.

  75. Uchiyama, Kunio, Fumio Arakawa, Hironori Kasahara, Tohru Nojiri, Hideyuki Noda, Yasuhiro Tawara, Akio Idehara, Kenichi Iwata, and Hiroaki Shikano. "Heterogeneous Multicore Architecture." In Heterogeneous Multicore Processor Technologies for Embedded Systems, pp. 11-18. Springer New York, 2012.

  76. Alpern, Bowen, Steve Augart, Stephen M. Blackburn, Maria Butrico, Anthony Cocchi, Perry Cheng, Julian Dolby et al. "The Jikes research virtual machine project: building an open-source research community." IBM Systems Journal 44, no. 2 (2005): 399-417.

  77. Eyerman, Stijn, and Lieven Eeckhout. "Probabilistic job symbiosis modeling for SMT processor scheduling." In ACM SIGARCH Computer Architecture News, vol. 38, no. 1, pp. 91-102. ACM, 2010.

  78. Snavely, Allan, Dean M. Tullsen, and Geoff Voelker. "Symbiotic jobscheduling with priorities for a simultaneous multithreading processor." In ACM SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp. 66-76. ACM, 2002.

  79. Acosta, Carmelo, Francisco J. Cazorla, Alex Ramirez, and Mateo Valero. "Thread to core assignment in SMT on-chip multiprocessors." In Computer Architecture and High Performance Computing, 2009. SBAC-PAD'09. 21st International Symposium on, pp. 67-74. IEEE, 2009.

  80. Apple Inc.. Mac OS X internals: a systems approach. 2000.

  81. Apple Inc.. Mac OS X internals: System Overview. 2001.

  82. Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. Java (TM) Language Specification, The (Java (Addison-Wesley)). Addison-Wesley Professional, 2005.

  83. Mac Developer Library. Threading Programming Guild.

  84. Venkat, Subramaniam. Programming Scala: Tackle Multicore Complexity on the JVM. 2009.

  85. Liang, Sheng. The Java TM Native Interface: Programmer's Guide and Specification. Addison-Wesley Professional, 1999.

  86. Xian, Feng, Witawas Srisa-an, and Hong Jiang. "Contention-aware scheduler: unlocking execution parallelism in multithreaded java programs." In ACM Sigplan Notices, vol. 43, no. 10, pp. 163-180. ACM, 2008.

  87. Shui Fu and Steve Zhang. "Operating System Support for Java Virtual Machine: A New Methodology of Boosting Java Runtime Performance." In ICCCI 2010.



    Research Groups:

    1. Bay Area Hadoop Meetups

    2. Big Data Cloud

    3. Seattle Scalability Meetup

    4. New York Hadoop User group

    5. Prof. James E. Smith's at University of Wisconsin

    6. Prof. Yan Solihin's group at North Carolina State University

    7. Prof. Prashant Shenoy's group at UMass Amherst


    Conferences and Journals:

    1. MapReduce Workshop

    2. [TO BE UPDATED]

    Software Tools:

Tools Platform Property Title Description
Eclipse N/A Free N/A In computer programming, Eclipse is a multi-language Integrated development environment (IDE) comprising a base workspace and an extensible plug-in system for customizing the environment. It is written mostly in Java. It can be used to develop applications in Java and, by means of various plug-ins, other programming languages including Ada, C, C++, COBOL, Fortran, Haskell, JavaScript, Perl, PHP, Python, R, Ruby (including Ruby on Rails framework), Scala, Clojure, Groovy, Scheme, and Erlang. It can also be used to develop packages for the software Mathematica. Development environments include the Eclipse Java development tools (JDT) for Java and Scala, Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others.
Hadoop N/A Free N/A  Apache Hadoop is an open-source software framework that supports data-intensive distributed applications, licensed under the Apache v2 license. It supports the running of applications on large clusters of commodity hardware. Hadoop was derived from Google's MapReduce and Google File System (GFS) papers.