
Test Suite Prioritization by Interaction Coverage

Renée C. Bryce
Computer Science

University of Nevada at Las Vegas
Las Vegas, Nevada 89154
reneebryce@cs.unlv.edu

Atif M. Memon
Computer Science

University of Maryland
College Park, MD 20742

atif@cs.umd.edu

ABSTRACT
Event-driven software (EDS) is a widely used class of soft-
ware that takes sequences of events as input, changes state,
and outputs new event sequences. Managing the size of tests
suites for EDS is difficult as the number of event combina-
tions and sequences grow exponentially with the number of
events. We propose a new testing technique that extends
software interaction testing. Traditional software interac-
tion testing systematically examines all t-way interactions
of parameters for a program. This paper extends the no-
tion to t-way interactions over sequences of events. The
technique applies to many classes of software; we focus on
that of EDS. As a proof-of-concept, we prioritize existing
test suites for four GUI-based programs by t-way interac-
tion coverage. We compare the rate of fault detection with
that of several other prioritization criteria. Results show
that prioritization by interaction coverage has the fastest
rate of fault detection in half of our experiments, making
the most impact when tests have high interaction coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Algorithms, Measurement, Experimentation

Keywords
combinatorial interaction testing, covering arrays, event driven
software, t-way interaction coverage, test suite prioritization

1. INTRODUCTION
Event-driven software (EDS) is a class of software that

is quickly becoming ubiquitous. All EDS share a common
event-driven model – they take sequences of events (i.e.,
messages, mouse-clicks) as input, change their state, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DoSTA’07, September 4, 2007, Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-726-1/07/09 ...$5.00.

(sometimes) output an event sequence. Examples include
web applications, graphical user interfaces (GUIs), network
protocols, device drivers, and embedded software. Quality
assurance tasks such as testing have become important for
EDS as they are now being used in critical applications.

Our earlier research on a particularly important class of
EDS, namely Graphical User Interfaces (GUIs) has shown
that existing testing techniques do not apply directly to
GUIs primarily because the number of permutations of input
events leads to a large number of states, and for adequate
testing, an event may, in principle, need to be tested in many
of these states, thus requiring a large number of test cases
(each represented as an event sequence) [7, 16]. Reduction
and prioritization of GUI test suites is an important and
challenging area of research.

In this paper, we extend software interaction testing. Soft-
ware interaction testing can systematically examine event
interactions. Further, test suites can be generated with a
logarithmic guarantee on size [1]. For the purpose of test-
ing GUIs we need to extend “software interaction testing”
to consider sequences of events (that contain event interac-
tions). As preliminary work towards this ultimate goal of
test-case generation of test suites that are event-interaction
adequate, we prioritize existing test suites by event inter-
action coverage. This enables us to understand whether
event interactions are indeed useful in testing. Results of
our empirical studies demonstrate that prioritization by in-
teraction coverage is useful for two programs under test and
their existing test suites. The test suites that benefit the
most from our prioritization have high 2-way and 3-way in-
teraction coverage.

The specific contributions of this work include: (1) the
extension of interaction coverage for EDS, (2) application
of interaction coverage for GUI test-suite prioritization, and
(3) empirical demonstration that higher 2-way and 3-way
interaction coverage test suites benefit the most from our
prioritization technique.

Structure of the paper: Section 2 provides background
of interaction testing, GUI testing, and test prioritization.
Section 3 discusses how to prioritize tests by t-way inter-
action coverage. Section 4 applies prioritization by 2-way
and 3-way interaction coverage to four GUI-based programs
and their existing test suites. Section 5 concludes with a
discussion of future work.

2. BACKGROUND
This section gives an overview of interaction testing, GUI

testing, and test prioritization. Additional details have been

1

presented in earlier reported research [14].

2.1 Software interaction testing
Software interaction test suites are a collection of tests

that systematically cover all t-way combinations of inter-
actions among system inputs. Consider an example of a
subset of an on-line store. Table 1 shows four parameters
and each of their equivalence classes that we refer to as “op-
tions for the parameters”. Interactions include combina-
tions of the options for different parameters. For instance,
a pairwise (2-way) interaction for this input is: {Member
Status=New Member, Member Type=basic}. Testing pair-
wise interactions may be useful when exhaustive testing of
all parameter-option interactions is not possible. In this ex-
ample, such exhaustive testing requires 34 tests. Pairwise
interaction testing needs 9 tests.

Member Member Discount Ship
Status Type Method

New Member Basic None Standard
(5-7 day)

Verified Silver Employee Express
member (3 - 5 day)
Unverified Gold Holiday Overnight
member (1 day)

Table 1: Four parameters to a user interface

Software interaction testing has been applied to gener-
ate test suites from scratch (see [3] and therein). Empirical
studies of interaction testing show promise. For instance,
Kuhn et al. examine medical devices recalled by the U.S.
Food and Drug Administration and identify 97% of defects
with pairwise interaction testing [6]. White generates inter-
action test suites to test component interactions on individ-
ual GUI screens [12]. Yilmaz et al. find interaction testing
useful for fault localization [15]. Bryce et al. apply 2-way
through 5-way interaction test suites to a Flight Guidance
System and find that the tests do not significantly increase
model coverage over simple requirements-based test suites
[2]. However, they conclude that the interaction tests only
consider combinations of input parameters and do not con-
sider state information. This recent work identifies the issue
that testing internal states is often important and that inter-
action testing should evolve to include temporal sequences
of events. This issue is important in many types of EDS. In
the remainder of this paper, we focus on a particular type
of EDS, that of GUI-based programs.

2.2 Event-interaction coverage for GUIs
GUI-based programs are difficult to test. A tester needs

to consider end-user behavior when testing GUI-based pro-
grams, yet such behavior is often unpredictable. Users can
invoke many events from windows. The number of possi-
ble event sequences grows exponentially with length. GUI-
based programs often have numerous windows with many
invocable events.

As exhaustive testing of all possible sequences of events
between windows is prohibitive, we consider that we can
test combinations of events between windows in a smaller
number of tests with interaction testing. However, interac-
tion testing has not yet been applied to generate tests that
consider temporal sequences of events. As a precursor to

such work, we explore prioritization by event interactions
for GUI programs and their test suites that already contain
such valid sequences of events.

2.3 Test Suite Prioritization
The prioritization problem is formally defined in [9]. Given

(T , Π, f), where T is a test suite, Π is the set of all test suites
obtained by permuting the tests of T , and f is a function
from Π to the real numbers, the problem is to find π ∈ Π
such that ∀π′ ∈ Π, f(π) ≥ f(π′). In this definition, the
possible prioritizations of T are referred to as Π and f is a
function to evaluate the orderings.

Prioritization can be based on any criteria. Examples in-
clude code coverage, cost estimates, areas of recent changes,
and others [4, 5, 9, 10]. Prioritization by event interactions
is a new criterion that we introduce next.

3. INTERACTION COVERAGE FOR PRI-
ORITIZATION

Consider the function for the test prioritization problem
by interaction coverage. Given a test suite T , Π is the set of
all possible test suites obtained by permuting the ordering of
tests. Each permutation is referred to as πi ∈ Π and an indi-
vidual permutation contains n tests, πi = (πi1, πi2, . . . , πin).
A function tCov(πik) computes the set of covered t-tuples
in a test πik. Then our prioritization function is f(πi) =

nP

j=0

|
jS

k=0

tCov(πik)|.
The tCov(πik) function that computes the set of covered t-

tuples in a test πik can apply to numerous types of software,
EDS being one type of such software. The definition of “t-
tuples” may even vary within a particular type of software.
In our current experiments, we apply the prioritization func-
tion to GUI-based programs and consider t-tuples as combi-
nations of events such that each event is from a unique win-
dow. For instance, assume that we have unique windows:
ω1, ω2, ω3, and ω4. Each window has two events as shown
in Table 2. An example test, t={E0 → E1 → E4 → E7}
includes four events that are each from three unique
windows. Events E0 and E1 are both invocable from win-
dow ω0 and are not counted as an event interaction in our
work since we consider event interactions between unique
windows. (Indeed, this is different than work in [13] in which
the covered t-tuples in a test include interactions on a single
window; this is also different from the definition of event-
interaction coverage used in [8], in which an interaction is re-
stricted to events that are related via their follows relation-
ship.) The 2-tuples of event interactions that we count for
this test include: (E0,E4), (E0,E7), (E1,E4), (E1,E7), and
(E4,E7). The 3-tuples include: (E0,E4,E7) and (E1,E4,E7).
No valid 4-tuples exist in this test.

ω0 ω1 ω2 ω3

E0 E2 E4 E6
E1 E3 E5 E7

Table 2: Four windows each have 2 events that may
be invoked.

Previous algorithms generate interaction test suites from
scratch, whereas our algorithm here prioritizes existing test
suites. Further, unlike previous applications of interaction

2

7531

6420

Input

6531T5

6421T4

7530T3

7420T2

6420T1

Test

No.

Original tests

0 21 3

0 21 3

----6T1

-3336T2

---66T3

22336T4

--566T5

T4T2T5T3T1Best test

Step 5Step 4Step 3Step 2Step 1

No. of uncovered 2-tuplesOriginal

Test No.

Prioritized test selection

Step 1. All tests initially cover 6 pairs. Random tie-breaking selects test T1.

T1 contains six new pairs: (0,2), (0,4), (0,6), (2,4), (2,6), (4,6).

Step 2. Now that T1 has been selected as the first test, tests T3 and T5 both

cover the most remaining pairs. Random tie-breaking selects test T3.

Step 3. Test T5 covers the most new pairs.

Step 4. Test T2 covers the most new pairs.

Step 5. Test T4 is the last remaining test.

Figure 2: Example trace of prioritizing existing tests by t-way interaction coverage

testCount = number of tests to prioritize
bestTest = select a test that covers the most

unique t-tuples
mark testbestTest as used
selectedTestCount = 1
while(selectedTestCount < testCount)

tCountMax = -1
for j=1 to (testCount-selectedTestCount)

if testj is not used
compute tCount as the number of

newly covered t-tuples in testj

if(tCount > tCountMax)
tCountMax = tCount
bestTest = j

else if(tCount == tCountMax)
break the tie at random

end for
add testbestTest to Tpi

mark testbestTest as used
selectedTestCount++

end while

Figure 1: Pseudocode to prioritize test suites

testing, the tests that we use do not include exactly one
option (event) for every parameter (window) in each test.
More than one event for a window may occur in the same
test, or a test may not include an event from every window.
Our algorithm accounts for these issues next.

A simple greedy algorithm can instantiate the prioritiza-
tion function for t-way interaction coverage. Figure 1 shows
one such algorithm. We select one-test-at-a-time to incre-
mentally cover the largest number of previously uncovered t-
tuples (of event interactions between unique windows). Ties
are broken at random. Once remaining tests do not cover
any additional t-tuples, remaining tests are ordered at ran-

dom.
Figure 2 shows a sample trace of the algorithm for 2-way

interaction coverage. The program under test has 4 windows
(ω0, ω1, ω2, ω3) that each have 2 events. The existing test
suite contains 5 tests (T1,...,T5). In the first iteration of the
algorithm, all five tests cover 6 new pairs. The tie is broken
at random to select test T1. In the second iteration, tests
T3 and T5 tie as they both cover the most (6) new pairs.
Random tie-breaking selects test T3. In the third iteration,
test T5 covers the most new pairs and becomes the third test
in the prioritized test suite. In the fourth iteration, there
are two remaining tests. Test T2 covers 3 new pairs and test
T4 covers only 2 new pairs. Therefore, test T2 becomes the
fourth test. In the last iteration, only test T4 remains and
becomes the last test in the prioritized test suite.

4. EXPERIMENTS
In the following experiments, we set out to find whether

prioritization by event interaction coverage improves the
rate of fault detection in four GUI-based programs that have
existing regression test suites. In the following sections, we
describe the systems under test, characterize the test suites
in regards to their coverage of 2-way and 3-way event in-
teractions, and compare the rate of fault detection for tests
prioritized by unique coverage of events, 2-way and 3-way
interaction coverage, test length, and at random.

4.1 Systems under test
We prioritize test suites for four GUI-based programs shown

in Table 3. The table shows each of the program names and
the number of windows, widgets, and user-invocable events
to test in each program. For instance, the TerpCalc pro-
gram has 2 windows and 151701 events (read as one window
has 15 invocable events and one window has 70 invocable

3

TerpCalc TerpPaint TerpSpread- TerpWord
sheet

Windows 2 11 9 12
Widgets 82 200 145 112
Events 85 247 188 156
LOC 9916 18376 12791 4893
Classes 141 219 125 104
Methods 446 644 579 236
Branches 1306 1277 1521 452

Table 3: Composition of TerpOffice applications.

events). Since there are only 2 windows for TerpCalc, we
can only prioritize by 2-way interactions among windows at
most. We may prioritize TerpPaint, TerpSpreadsheet, and
TerpWord by higher strength (t > 2) interaction coverage
since there are more than 2 windows. Table 3 also includes
the LOC, classes, methods, and branches for each applica-
tion.

4.2 Existing test suites
The TerpCalc, TerpPaint, and TerpSpreadsheet test suites

contain 300 tests; TerpWord contains 250 tests. The existing
test suites that we use cover every window and unique user
invocable event at least once. The length of tests vary, as
does the composition of tests. The tests contain as many as
47 steps for TerpCalc, 51 for TerpPaint, 50 for TerpSpread-
sheet, and 50 for TerpWord.

Additionally, each application has a pre-existing fault ma-
trix, i.e., a representation of a set of faults known to be de-
tected by each test case. These faults were similar to those
described in earlier reported research [14]. Hence, for each
test suite, we can compute the “set of faults detected” by
simply taking a set union of the faults detected by all its
constituent test cases.

4.3 Prioritization criteria
In these experiments, we prioritize by five criteria (with

all ties broken at random): (1) Unique event coverage
- order tests to cover as many unique events as possible, as
early as possible; (2) Event Interaction coverage (IC)
- order tests by event interaction coverage (we include 2-
way and 3-way interaction coverage in the studies in this
paper); (3) Longest to shortest - order tests by their
lengths, from longest to shortest; (4) Shortest to longest
- order tests by their lengths, from shortest to longest; (5)
Random test ordering - randomly permute the ordering
of tests.

4.4 Results
The results of the prioritization techniques vary among

the four GUI-based programs and their test suites. In this
section, we begin with a summary of the composition of the
existing test suites in regards to the number of 2-way and
3-way interactions that they cover. We follow this summary
with a discussion of the rate of fault detection for each of
the four programs, reported as the Average Percentage of
Faults Detected (APFD). (APFD measures how rapidly a
prioritized test suite detects faults. See [9] for a discussion
of how APFD is computed.)

Table 4 shows that the existing test suites do not cover all
2-way and 3-way interactions. The TerpCalc test suite in-

Calc Paint Spread- Word
sheet

2-way 2-way 2-way 2-way
No. of 2-tuples 1,065 26,253 14,721 10,815
% of 2-tuples 99.34% 46.34% 50.75% 64.58%
covered in
test suite
No. of tests 67 199 103 146
that cover the
unique 2-tuples
in the test suite

3-way 3-way 3-way 3-way
No. of 3-tuples n/a 1,577,160 626,012 439,734
% of 3-tuples n/a 6.15% 9.76% 16.51%
covered in
test suite
No. of tests n/a 185 127 168
that cover the
unique 3-tuples
in the test suite

Table 4: Summary of 2 and 3-tuples covered in the
TerpCalc, TerpPaint, TerpSpreadsheet, and Terp-
Word test suites

cludes the largest coverage of 2-way interactions with 99.34%
covered. The TerpWord test suite contains the next best
coverage with 64.58% of 2-way and 16.51% of 3-way interac-
tions. The TerpSpreadsheet and TerpPaint test suites cover
only about half of the possible 2-way interactions and less
than 10% of the possible 3-way interactions. In the coming
discussions, we observe that TerpCalc and TerpWord have
the best event interaction coverage and benefit the most
from prioritization by interaction coverage. Table 4 also
shows that the available 2-way and 3-way interactions are
covered in a subset of the test suite. For instance, the Ter-
pCalc test suite contains 300 tests, but as few as 67 tests
cover the available 2-way interactions.

4.5 TerpCalc
The results of the prioritized test suites are shown in Fig-

ure 3. The figure includes graphs of the rate of fault detec-
tion in (a) logarithmic scale to better visualize the impact of
prioritization in earliest tests and also (b) unscaled. Prior-
itization by 2-way interaction coverage is the most effective
technique during the initial tests. The results of the initial
30% of the tests show that prioritization by 2-way event in-
teraction has the best APFD. Prioritization by test length
(longest to shortest) has the second best APFD, followed
by prioritization by unique events. Randomly ordered tests
are less effective and prioritization by shortest to longest
test length is the least effective. The first 30% of the test
suite is most interesting here because all 2-way event inter-
actions are covered in the first 67 tests (we then prioritize
the remaining tests at random).

The APFD for the first 10 tests is best with 2-way interac-
tion coverage prioritization. Prioritization by unique events
is the second most effective in these initial tests. While cov-
ering all unique events early is useful in this example, it does
not apply for prioritizing the entire test suite here since all
unique events are covered in the first 7 tests (we prioritize
the remaining 293 tests at random).

After the initial 30% of the tests are run, prioritization

4

by test length (longest to shortest) is the most effective
technique. Prioritization by 2-way interaction coverage and
unique events follows in effectiveness. Random ordering and
prioritization by length (shortest to longest) are least effec-
tive.

4.6 TerpPaint
Figure 4 shows that in TerpPaint, prioritization by the

length of tests (longest to shortest) has the best overall
APFD. Prioritization by 3-way interactions is the second
best; by 2-way is the third best; unique event coverage is
fourth best; random is fifth; and length (shortest to longest)
is least effective.

4.7 TerpSpreadsheet
Figure 5 shows that prioritization by unique event cov-

erage is initially most effective, followed by 2-way and then
3-way interaction coverage. After 50% of the tests are run, 2-
way and then 3-way interaction coverage are most effective.
Prioritization by length (longest to shortest) is generally less
effective (especially in earliest tests), but works better than
random ordering and prioritization by length (shortest to
longest).

4.8 TerpWord
Figure 6 shows that the TerpWord test suite has the most

effective APFD when prioritized by 2-way and 3-way in-
teraction coverage (each slightly outperforming each other
at different points in the test suite). Prioritization by test
length (longest to shortest) and unique event coverage are
the next most effective. Random test ordering and prioriti-
zation by length (shortest to longest) are the least effective.

4.9 Summary of Results
Our experiments show that test suites with the highest

event interaction coverage benefit the most from our pri-
oritization technique. Given that all of our test suites are
in a comparable range of size (250 to 300 tests) and yet
the number of t-tuples of event interactions are quite differ-
ent for the 4 applications (see Table 4), perhaps it is not
surprising that the test suites for the programs with the
larger number of t-tuples of possible event interactions, do
not have high interaction coverage in the limited number of
tests. For instance, TerpCalc has the fewest number of win-
dows, widgets, and events. The TerpCalc test suite has the
best 2-way interaction coverage among those in our exper-
iments; as few as 67 out of the 300 tests cover 99% of the
2-way event interactions. TerpWord is our smallest applica-
tion in terms of LOC and has the second smallest number
of event interactions to cover. TerpWord has the second
highest 2-way interaction coverage and the best 3-way in-
teraction coverage in our experiments. Similar to TerpCalc,
it benefits from prioritization by 2-way, and also from 3-way
interaction coverage. TerpSpreadsheet has more events than
TerpCalc and TerpWord; the test suite has less interaction
coverage and does not benefit as much from prioritization by
event interaction coverage. Further, TerpPaint is the largest
application and has a test suite with the least event interac-
tion coverage. Prioritizing the TerpPaint test suite by event
interaction coverage does not improve the rate of fault de-
tection. Indeed, these results show that prioritization by
interaction coverage is quite useful in some cases, particu-
larly when test suites have higher interaction coverage.

4.10 Threats to Validity
Threats to external validity are factors that may impact

our ability to generalize our results to other situations. Our
main threat to external validity in this experiment is the
small number of subject applications. In this study, we
only run our data collection and test suite prioritization pro-
cess on four programs, which we chose for their availability.
These programs were constructed in more or less the same
manner and may not be representative of the broader popu-
lation of programs. An experiment that would be more read-
ily generalized would include multiple programs of different
sizes and from different domains. Moreover, the character-
istics of original test suites (such as their fault detecting
ability and how they were constructed) play a role in the
size and fault detection reduction results. This threat can
be addressed in future work by choosing original test suites
adequate for a variety of coverage criteria.

Threats to construct validity are factors in the experiment
design that may cause us to inadequately measure concepts
of interest. In our experiment, we made some simplifying
assumptions in the area of costs. In test suite prioritization,
we are primarily interested in two different effects on costs.
First, there is potential savings obtained by running “more
effective” test cases sooner. In this study, we assume that
each test case has a uniform cost of running (processor time)
and monitoring (human time); these assumptions may not
hold in practice. Second, we assume that each fault con-
tributes uniformly to the overall cost, which again may not
hold in practice.

5. CONCLUSIONS AND FUTURE WORK
Event driven software (EDS) is a widely used class of

software that requires novel testing techniques that can ad-
equately test software with a manageable number of tests.
We propose one technique for this purpose that extends pre-
vious applications of software interaction testing. Previous
work on interaction testing generates test suites that cover
t-way combinations of input parameters. This paper sug-
gests that interaction testing evolve to consider temporal
sequences of events. We begin to look at this issue by us-
ing interaction coverage to prioritize existing test suites for
four GUI-based programs. Prioritization by interaction cov-
erage of events improves the rate of fault detection in half
of our experiments. The test suites that include the largest
percentage of 2-way and 3-way interactions have the fastest
rate of fault detection when prioritized by interaction cov-
erage. The test suites with the highest event interaction
coverage are our smallest programs that have fewer t-way
event interactions to cover. These results raise the need for
future work that identifies criteria for the “event-interaction
adequacy” of test suites. In addition, techniques to gener-
ate test-cases that meet such event-interaction adequacy are
needed.

Our ultimate goals are to (1) identify criteria for “event in-
teraction adequacy” of tests suites and (2) to develop tools
that automatically generate tests that meet such criteria.
This is particularly useful in GUI-based testing where it is
difficult to predict end user behavior (in which users may
execute numerous event sequences). The application of in-
teraction testing to systematically examine possible event
sequences in EDS is a new contribution that we have just
begun to examine.

5

20

40

60

80

100

120

140

160

180

200

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC

Long to short
Short to long

Random

(a) log scale

20

40

60

80

100

120

140

160

180

200

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 3: TerpCalc: rate of fault detection using prioritized test orderings.

0

20

40

60

80

100

120

140

160

180

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(a) log scale

0

20

40

60

80

100

120

140

160

180

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 4: TerpPaint: rate of fault detection using prioritized test orderings.

In this work, we show that prioritization by interaction
coverage can be useful. Future work may extend this priori-
tization work to also consider: prioritization with respect to
test lengths and incremental t-way interaction coverage. We
discuss each of these issues.

Prioritization by length: One major issue that arises
when prioritizing existing tests for GUIs is that tests may be
of varying lengths; those with more steps may likely cover
more interactions than tests of shorter length. Should one
give preference to a test that takes 10 seconds to run and
covers 6 interactions; or should one give preference to two
tests that take 5 seconds each, but cover a total of 8 inter-
actions? (This problem is similar to the “time-based test
prioritization problem” in [11].)

Work in [14] shows that it is useful to give preference to
running many shorter tests rather than fewer tests of longer
length. They rapidly identify many “shallow” faults with
shorter tests and then recommend using remaining time to
run longer tests that find “deeper” faults. Our results show
that the test prioritization technique of “shortest to longest
length” has the slowest rate of fault detection on a test-by-
test basis, but do not take the time to run the tests into
account. Future work will examine this issue.

Prioritization by incremental t-way coverage: In
the tests that we examine, the available 2-way and 3-way
unique event interactions are covered in only a subset of the

test suite. While we prioritized remaining tests at random
in our experiments, remaining tests may instead be priori-
tized by higher strength (t > 2) interactions. For instance,
prioritize the first � tests to cover all unique events. Pri-
oritize the next batch of tests by t=2 interaction coverage.
Once remaining tests do not cover any additional t=2 (pair-
wise) interactions, order remaining tests to cover the most
t+1 interactions. This process continues until all tests are
prioritized by ascending order of t-way interaction coverage.

6. ACKNOWLEDGEMENTS
This work was partially supported by the US National

Science Foundation under NSF grant CCF-0447864 and the
Office of Naval Research grant N00014-05-1-0421.

7. REFERENCES
[1] R. C. Bryce and C. J. Colbourn. The density

algorithm for pairwise interaction testing. Journal of
Software Testing, Verification, and Reliability, to
appear.

[2] R. C. Bryce, A. Rajan, and M. P.E. Heimdahl.
Interaction testing in model-based development: Effect
on model-coverage. Proc. of the 13th Asia-Pacific
Software Engineering Conf., pages 258–269, Dec. 2006.

[3] C. J. Colbourn. Combinatorial aspects of covering
arrays. Le Matematiche (Catania), 58:121–167, 2004.

6

0

10

20

30

40

50

60

70

80

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(a) log scale

0

10

20

30

40

50

60

70

80

300200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 5: TerpSpreadsheet: rate of fault detection using prioritized test orderings.

0

10

20

30

40

50

60

70

80

90

100

200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(a) log scale

0

10

20

30

40

50

60

70

80

90

100

200100

N
o.

 o
f f

au
lts

Test no.

Unique event
2-way IC
3-way IC

Long to short
Short to long

Random

(b) unscaled

Figure 6: TerpWord: rate of fault detection using prioritized test orderings.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies.
IEEE Trans. on Software Engineering, 18(2):159–182,
2002.

[5] S. Elbaum, G. Rothermel, S. Kanduri, and
A. Malishevsky. Selecting a cost-effective test case
prioritization technique. Software Quality Journal,
12(3):185–210, 2004.

[6] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software
testing. IEEE Trans. on Software Engineering,
30(6):418–421, Oct. 2004.

[7] Atif M. Memon. An event-flow model of gui-based
applications for testing. Software Testing, Verification
and Reliability, 2007.

[8] Atif M. Memon, Mary Lou Soffa, and Martha E.
Pollack. Coverage criteria for GUI testing. In
ESEC/FSE-9: Proc. of the 8th European software
engineering conf. held jointly with 9th ACM SIGSOFT
Int. symposium on Foundations of software
engineering, pages 256–267, 2001.

[9] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
ACM Trans. on Software Engineering and
Methodology, 27(10):929–948, 2001.

[10] A. Srivastava and J. Thiagarajan. Effectively

prioritizing tests in development environment. In
Proc. of the Int. Symposium on Software Testing and
Analysis, pages 97–106, Jul. 2002.

[11] Kristen R. Walcott, Mary Lou Soffa, Gregory M.
Kapfhammer, and Robert S. Roos. Timeaware test
suite prioritization. In Proc. of the Int. Symposium on
Software Testing and Analysis, pages 1–12, Jul. 2006.

[12] L. White. Regression testing of gui event interactions.
In Proc. of the Int. Conf. on Software Maintenance,
pages 350–358, Nov. 1996.

[13] L. White and H. Almezen. Generating test cases for
gui responsibilities using complete interaction
sequences. In Proc. of the Interactional Symposium on
Software Reliability Engineering, pages 110–121, 2000.

[14] Qing Xie and Atif M. Memon. Studying the
characteristics of a ‘good’ GUI test suite. In Proc. of
the 17th IEEE Int. Symposium on Software Reliability
Engineering. IEEE Computer Society Press, 2006.

[15] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Trans. on Software
Engineering, 31(1):20–34, Jan. 2006.

[16] Xun Yuan and Atif M. Memon. Using GUI run-time
state as feedback to generate test cases. In Proc. of the
29th Int. Conf. on Software Engineering, May 2007.

7

