
Modeling Requirements for
Combinatorial Software Testing

C. Lott, A. Jain S. Dalal
Applied Research Area Imaging and Services Technology
Telcordia Technologies, Inc. Xerox Corporation
One Telcordia Drive 800 Phillips Road
Piscataway, NJ 08854 Webster, NY 14580

ABSTRACT
The combinatorial approach to software testing uses models to gen-
erate a minimal number of test inputs so that selected combinations
of input values are covered. The most common coverage criteria is
two-way, or pairwise coverage of value combinations, though for
higher confidence three-way or higher coverage may be required.
This paper presents example system requirements and correspond-
ing models for applying the combinatorial approach to those re-
quirements. These examples are intended to serve as a tutorial for
applying the combinatorial approach to software testing. Although
this paper focuses on pairwise coverage, the discussion is equally
valid when higher coverage criteria such as three-way (triples) are
used. We use terminology and modeling notation from the AETG1

system to provide concrete examples.

1. INTRODUCTION TO COMBINATORIAL
SOFTWARE TESTING

Combinatorial testing is a special kind of black-box testing[2, 4].
It is a relatively low-level functional-test technique that can be ap-
plied broadly across the software development lifecycle, from unit
testing to customer acceptance testing. As in all functional testing
approaches, a set of test inputs is presented to a system, and the
result is evaluated for conformance to the requirements.

The combinatorial testing approach is used to generate sets of test
inputs from models of system requirements. Instead of testers choos-
ing test inputs manually, testers develop models of the require-
ments, and an algorithm builds sets of test values automatically.
Principles from design of experiments (DOE) are applied to choose
a representative sample, thereby minimizing the size of the gener-
ated test sets. However, the designs that are used in the context of
combinatorial design testing are a new class of designs that select
samples for efficacy, not for reliability in statistical estimation.

For example, a computer manufacturer must test different system

1AETG is a trademark of Telcordia Technologies, Inc.

configurations. Testing every configuration is impossible, but the
manufacturer wants to ensure that each operating system works
with each storage system, with each display system, etc. Stated dif-
ferently, the goal is to cover each pair, such as an operating system-
storage system pair, at least once. Some time and money is needed
to build and test each configuration, so minimizing the number of
systems to be tested is interesting. The problem of testing system
configurations is ideal for the combinatorial test approach. Given
an appropriate model, a combinatorial test generator can select a
minimal number of system configurations (i.e., test cases) such that
every operating system occurs at least once with every storage sys-
tem, at least once with every display system, etc. In other words,
the set of configurations covers all pairwise combinations of sys-
tem components. Note that each test case covers several pairwise
combinations, which is the key to minimizing the number of cases.

Another example is testing a web-based application, where a user
enters data and picks values in a form, then submits the form for
processing. Combinatorial testing will generate a set of cases that
ensure every combination of values is tried at least once. This is
especially relevant for the field values that are picked from a fixed
list. However, combinatorial testing can also assist with values in
user-specified fields such as the user’s name. In the case of a user’s
name, empty, short, and long values can be tested in combination
with empty, short and long values in other user-specified fields.

In this paper, we present example system requirements and sample
models of those requirements that can be used to generate suitable
test cases. These examples are intended to serve as a tutorial for
applying the combinatorial approach to software testing. We use
terminology and modeling notation from the AETG system to pro-
vide concrete examples. However, the modeling guidelines given
here are not limited to the AETG system.

2. MODELING SYSTEM REQUIREMENTS
WITH AETG

System requirements are modeled using a basic set of constructs
described next. The fundamental AETG construct, arelation, is
a table with columns for each input item, and rows for the values
of each input item. See Table 1 for an example. An input item,
called afield (or a parameter), is any discrete input to a system
under test such as a field on a HTML input form, a parameter to a
procedure, etc. Each field can have a different number of values,
which are partitioned into valid and invalid values. A test generated
from valid values is a valid test, and a test generated from valid and
invalid values is an invalid test. Invalid tests are expected to fail
before completion because of some error condition.

Chris
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.A-MOST '05, May 15-16, 2005, St. Louis, Missouri, USA. Copyright 2005 ACM 1-59593-115-5/00/0004 $5.00.

Fields
Operating sys. Storage sys. Display sys.
Linux IDE Simple

Values MSW 2k RAID AGP 64M
MSW XP SCSI

Firewire

Table 1: AETG relation shown as a table

From a relation, the AETG system generates test cases, which are
vectors of values, one per field. A generated vector of values is
called atuple. A single relation with fields and field values is
enough in many cases for generating tuples that achieve thorough
testing of the requirements. For the relation shown in Figure 1 with
24 possible combinations, the AETG system finds 12 test cases to
cover all possible pairs. The test cases are shown in Table 2.

Test number Operating sys. Storage sys. Display sys.
1 MSW 2k Firewire AGP64M
2 Linux Firewire Simple
3 MSW 2k SCSI Simple
4 Linux IDE AGP 64M
5 MSW 2k RAID Simple
6 MSW XP IDE Simple
7 Linux RAID AGP 64M
8 MSW XP SCSI AGP64M
9 Linux SCSI AGP64M
10 MSW 2k IDE Simple
11 MSW XP RAID AGP 64M
12 MSW XP Firewire Simple

Table 2: Generated tests from AETG

Additional constructs make it possible to model complex situations.
These constructs are also used in AETG relations.

First, to take advantage of existing test cases, or to ensure that a
particular test case appears in the generated set, aseedtest case
can be defined in a relation. A seed is a tuple, just like a generated
tuple, except that the user supplies it as input to the test generator.

Second, to reflect closely linked fields in a model, compound field
values can be defined. Acompound is a set of values for fields.
Compounds are useful when pairwise coverage is not needed within
a set of fields (and their values), but pairwise (or higher) coverage
of each set of fields (their values) is desired with other fields. An
example is presented in the next section.

The third and last construct for modeling complex situations is the
constraint. This is simply an if-then statement that captures rela-
tionships among fields that must be honored in the set of generated
test cases. For example, if generating mathematical expressions,
the maximum integer value can appear on both sides of the sub-
traction operator but not the addition operator. Constraints are con-
verted into statements about what field values cannot occur together
in a generated tuple.

2.1 Data generation
A combinatorial test generator can be used to generate sample data,
not just test-case inputs. A generated data set covers pairwise com-
binations of values in that data, which can be a rich source of exam-

ples for testing. Tests that query or update the generated data can be
written manually or generated automatically. For example, Dalal
et al. used AETG to generate rows for a relational database [3].
That paper also describes a project where the combinatorial test ap-
proach was used to generate data for populating five separate tables
in a system under test, after which test cases were built by hand.

2.2 Scalability
A table of values can grow in the number of fields (table width)
or the number of field values (table height). The number of test
cases generated in combinatorial testing grows with the log of the
number of fields but with the square of the number of values.

A combinatorial test generator should scale well with large num-
bers of fields. Each test case allows a large number of pairwise
combinations to be covered. In fact, it is possible to add one or
more fields to a test model without increasing the number of tests
required to cover all pairwise combinations in that model. A similar
conclusion holds for triple and higher order coverage.

A combinatorial test generator cannot scale well with large num-
bers of values. Each field value must appear in a test case with
every value for every other field. So a field with a large number of
values will result in a large number of generated tests. This also
means that adding a single value to a field may result in a signif-
icant increase in the number of generated tests. Often a model of
this characteristic can be alternatively remodeled so that the field
with the large number of values is broken into multiple fields with
a small number of values each. This adjustment yields a substantial
reduction in the number of test cases required to achieve the desired
coverage. An example of this type is given in Section 3.9.

Relations can also be highly constrained. Large numbers of con-
straints may significantly increase the amount of time required to
find a solution. If a relation has sufficient constraints, it may be im-
possible to find a solution that covers all pairs. A non-obvious part
of this problem is that a set of explicit constraints may give rise
to other implicit constraints that may consequently rule out other
pairs. For example, consider a relation with three fields, binary in-
put {0, 1} for each field, and the following two constraints: (1) if
Field 1 is 0, then Field 2 cannot be 2 (ignoring Field 3); and (2)
if Field 1 is 1, then Field 3 cannot be 1 (ignoring Field 2). This
implies an additional constraint that if Field 2 is 1, then Field 3
cannot be 1 irrespective of the value of Field 1. The logic is clear
since if Field 3 is 1, then Field 1 cannot be 1 by constraint (2), so
Field 1 can only be 0, and thus by constraint (1) Field 2 cannot
be 1. Constraint identification and solving is a major part of the
algorithms for combinatorial test generation. Further, the use of
constraints usually increases the number of test cases required for
pairwise and higher coverage.

2.3 Multiple relations in one model
System requirements can be modeled with multiple relations, as
demonstrated in several examples below. All relations in a model
use fields from some defined set. Relations can have identical fields
(perfect overlap), can be disjoint (have completely different sets of
fields), or can overlap partially in their fields. Because tests are
generated separately for each relation, the set of results must be
merged when a model has multiple relations.

Using multiple relations in a single model allows generation of tests
using different coverage criteria. In other words, one relation may
have a lower coverage and another a higher coverage criteria. For

example, consider a test scenario that has at least eight inputs. A
model can be constructed for this scenario with two relations: the
first relation has half the fields and specifies three-way coverage,
and the second relation has the remaining fields and specifies pair-
wise coverage. Tests are generated according to the two relations
and merged. Coverage can be reduced further by specifying a cov-
erage value of one for a relation.

Next, we discuss how and whether generated results can be merged.
For perfectly overlapping relations, no merge is required. The sets
of tests are simply joined together. An issue to note here is that
some pairs may be covered many times unless field values are cho-
sen judiciously. To achieve a smaller number of test cases, a model
with perfectly overlapping relations can usually be rewritten as a
single relation with constraints.

For disjoint relations, merging generated tests is relatively straight-
forward. All fields from all relations are expected to appear in the
output, which is a simple union of fields. The only minor issue
is how to merge results of different cardinality. For example, in a
specification with two relations, one may yield 3 cases and the sec-
ond may yield 4. The output set must have at least 4 cases. To fill
out the tuple that has the fourth case from the second relation, some
case from the first relation must be repeated.

Merging is a significant problem for partially overlapping relations.
Does field “f1” in one relation mean the same thing as the field “f1”
in another relation? What about constraints, which are local to a
relation? Because the answers to these questions require further
research, and because users do not seem to require this feature,
the current version of the AETG system does not support partially
overlapping relations.

2.4 Flow Testing
When doing system or product test, testing scenarios typically in-
volve more than a single step of providing an input and verifying
the output. Instead, multi-step scenarios or flows are needed.

Consider testing of a student self-registration system. The system
allows students to browse the catalog of courses, check the avail-
ability of a particular course, and register for a course. The system
has a database that keeps track of prerequisites and gives appro-
priate errors when a student tries to register for a course for which
the prerequisites are not met. One flow for system test can con-
sist of the steps of login, selecting the catalog browser, searching
for a course using keyword search, selecting a course and a term,
and registering for the course. In this flow there is a dependency
between steps. For example, the keyword search may return no
results, or registration may fail for a selected course because the
prerequisites were not met.

AETG can be used for designing efficient test scenarios for flow
testing such as this example. Several flows can be modeled using
a state-transition diagram (state machine), as shown in Figure 1.
Two special states are the initial state and the final state. For ex-
ample, for the above system, the states would be “Initial,” “Lo-
gin,” “Browsing,” “Empty search,” “Non-empty search,” “Success-
ful registration,” “Unsuccessful registration,” and “Final.” States
sometimes logically correspond to screens on the user interface,
but that may not always be the case.

The input variations in each state can then be modeled as an AETG
relation. These inputs may correspond to the inputs which the real

Initial Login

Empty
search

Non-empty

Browsing

search

FinalSuccessful
registration

Unsuccessful
registration

Figure 1: State-transition diagram for a registration system

user would supply. For example, when in “Browsing” state, the
user interface may have several fields for the term, year, course
number, course name, etc. For each of these fields we can have
a field in an AETG relation where we can assign valid values, in-
valid values, and constraints among these values. A state transition
happens when the user performs certain actions on the user inter-
face like submit, select, click, etc. Besides the action, the transition
from one state to another depends upon the input values entered in
the immediate prior state or another state that occurred in the path
leading to this state. Thus, transition between states is a Boolean
condition involving fields in the AETG relations. We use a special
field named “Action” with each state. For example, the state tran-
sition from “Browsing” to “Empty search” can be a statement like
“Browsing.CourseName = ‘Course Does Not Exist’ ”.

A more concise formalism of the above is as follows. States are
represented usingS(i) whereS(0) = “Initial,” S(n) = “Final,” and
n denotes the total number of states. For each stateS(i) there is a
AETG modelm(i) consisting of a set of relations. Thus, fully qual-
ified path to a field name isS(i).f(j). Transitions between states
are Boolean expressions on the fields. Another piece of informa-
tion each transition must capture is the action needed to perform to
enable that transition. This is not important for AETG modeling
but is required for creating automated scripts.

Given the state machine description as above, there are two meth-
ods for designing the test cases. The first approach requires creating
the test cases for each state using the AETG system. Assume that
T (i) is the set of test cases for statei. This method then requires
that a script be created to traverse the state machine using the fol-
lowing basic process:

1. Initialize all states as unselected and each test case as uns-
elected. Initialize “Flow” as empty. Start in current state =
S(0).

2. Repeat Loop

(a) Using the flow, identify all the transitions that are en-
abled as per the condition on the transition. Randomly
select a transition that was enabled. Give more weight
to transitions leading to an unselected state. Set the cur-
rent state toS(i). Mark the new stateS(i) as visited.

(b) Randomly select a test casetj ∈ T (j) in stateS(i).
Give preference to unselected test cases. Flow = Flow
U tj . Mark the test case as selected.

(c) If the current state isS(n) (the final state) then output
Flow. Reset Flow to empty. Set current state =S(0).
Repeat until all states and test cases have been visited.

The above process is not guaranteed to terminate. However under
the following conditions it is guaranteed to terminate:

1. Each transition condition is memoryless (Markovian); that
is, it depends only upon the input in the current state and not
on any of the prior states (this can be ensured through careful
definition of states);

2. The condition specified is consistent with the condition of
the AETG model for that state; and

3. The condition does not refer to more fields than the degree
of interaction specified in the AETG model forS(i).

Note that as per the above algorithm, besides every possible pair-
wise or higher field coverage, we also guarantee that all adjacent
states in the flow hierarchy are traversed; i.e., all possible pairs of
states are covered. In general there is no guarantee that every path
is traversed; when the Markovian property holds one also has a
guarantee that every path is covered.

Alternately, the other process is:

1. Without regard to conditions, traverse the state machine and
decompose it into a set of paths such that all states and all
transition are covered at least once.

2. For each path, create one AETG model by taking a cartesian
product of the corresponding AETG models and adding the
conditions in the transition to the conditions in the model.

3. For each path, create efficient test cases.

2.5 Post-processing and scripts
Tests from a combinatorial test-generation system generally require
post processing to format the input values for the system under test.
Depending on that system, some scripting infrastructure can be ex-
tremely helpful to execute the generated tests. For example, a ba-
sic test harness can apply generated sets of test values to a system
under test, collect the results, and possibly provide a rudimentary
evaluation of the result.

2.6 Using multiple models together
Multiple data sets may be generated and used together. In an ex-
ample discussed above, several data sets may be generated. Alter-
nately, database requirements may modeled first and used to gen-
erate a sample data set, after which other functional requirements
(e.g., updates) may be modeled and used to generate test cases.

3. EXAMPLE AETG SYSTEM MODELS
This section presents sample system requirements and correspond-
ing models for testing those requirements. These examples are in-
tended to serve as a tutorial for applying the AETG system.

3.1 Basic billing system
Consider requirements for a billing system that processes telephone-
call data with the following four call properties. Values for the
properties are also shown in Table 3. A basic black-box test con-
sists of presenting the system with a call record (i.e., a set of values
for all the properties shown above), and observing the system’s re-
sponse. Stated abstractly, this system has four inputs, and each

input has three possible values.2 In this example, all combinations
are valid, and no invalid values are used. Testing all possible com-
binations of values requires34 = 81 tests, but allpairwisecombi-
nations of values can be covered with 10 tests.

Fields
Access Billing Call type Status
Loop Caller Local Success

Values ISDN Collect LongDistance Busy
PBX 800 International Blocked

Table 3: AETG relation shown as a table

Translating these requirements to a model for a combinatorial test
generator is straightforward. In the AETG system, each call prop-
erty is considered afield, and each of the possible values for each
property is afield value. Here is the model:

1 field Access;
2 field Billing;
3 field Call_Type;
4 field Result;
5
6 Bill rel 2 {
7 Access : "Loop1" "ISDN" "PBX" ;
8 Billing : "Caller" "Collect" 800 ;
9 Call_Type : "Local" "Long Distance" "International" ;

10 Result : "Success" "Busy" "Blocked" ; }

3.2 Invalid tests
An invalid test is a tuple that violates some requirement. The AETG
system generates two kinds of invalid tests: invalid values and vio-
lated constraints. This section focuses on tests with invalid values.

Invalid values can be specified in AETG relations on a per-field
basis just like valid values. If invalid values are available, invalid
tests are built by choosing an invalid value for exactly one field and
then choosing valid values for all remaining fields.

Invalid values are denoted in the specification by appending an ex-
clamation mark. After extending the AETG model shown above
with a few invalid values, the test specification looks like this:

1 field Access;
2 field Billing;
3 field Call_Type;
4 field Result;
5
6 Bill rel 2 {
7 Access : "Loop1" "ISDN" "PBX" "Radio"! ; # CHANGED
8 Billing : "Caller" "Collect" 800 "Free"! ; # CHANGED
9 Call_Type : "Local" "Long Distance" "International" ;

10 Result : "Success" "Busy" "Blocked" ; }

3.3 Using existing or critical tests
This example considers the problem of guaranteeing that a certain
combination is included among a set of generated cases that yield
pairwise coverage. A certain combination may reflect some test
case that already exists or cover a fault that was recently fixed. No
matter the reason, testers want to cover these combinations as part
of the generated test suite. Tests can always be added to a gener-
ated set, but since a combination achieves pairwise coverage of a
certain set of values, it is a nice optimization for the generator to
take advantage of the required combination.

To extend the previous example, we consider the case of a call with
the following properties: access is “ISDN,” billing is “Collect,” call
type is “Long Distance,” and result is “Blocked.”
2In the terminology of statistical experiment design, there are four
treatmentswith threelevelseach.

In AETG terminology, a required combination is called aseedtest
case. The test-generation algorithm takes into account the pairwise
value coverage achieved by these combinations. After extending
the AETG model shown above with the seed case, the test specifi-
cation looks like this:

1 field Access;
2 field Billing;
3 field Call_Type;
4 field Result;
5
6 Bill rel 2 {
7 Access : "Loop1" "ISDN" "PBX" "Radio"! ;
8 Billing : "Caller" "Collect" 800 "Free"! ;
9 Call_Type : "Local" "Long Distance" "International" ;

10 Result : "Success" "Busy" "Blocked" ;
11 seed { # NEW
12 Access Billing Call_Type Result # NEW
13 "ISDN" "Collect" "Long Distance" "Blocked" } } # NEW

The example billing system must be for unlimited-length calls, since
it completely ignores call duration! This is corrected next.

3.4 Related fields
This example adds call duration to the previous billing-system ex-
ample. In this system, call duration must be computed from a pair
of values: start time and stop time. (Date information should be
included in the times, to allow a call to span a day boundary, but
is omitted here just to keep things short.) These input values can
be modeled as two additional inputs to the system, with some valid
values for each. A pairwise generator will yield some combina-
tions, and the duration can be computed from each combination.

However, unlike the previous inputs, there is a strong dependency
between start and stop times. It probably makes sense to try 1-
minute, 1-hour, and possibly 1-day calls. While it is possible to
test all possible or pairwise combinations of a set of start and stop
times, it probably isn’t helpful.

We need to link the two time fields together so that the test gen-
erator considers them as one compound field, not two separate
fields. We could do something relatively crude, like declare a field
“start stop time” and use compound values like “7:49-7:50”, “8:00-
9:00”, and so on, but that would require some post processing. Ide-
ally the model will reflect the reality of linked fields without crude
tricks. In this example, we want to treat pairs of time values as a
single field value during test generation. We want pairwise cover-
age for time-pair 1 and value 1 of field 1, time-pair 1 and value 2
of field 1, and so on. The compound nature of the pair of time val-
ues should be ignored during generation, and then the result should
show the values separately.

The AETG system provides a modeling construct for this kind of
compound field called acompound. A compound can can be used
to gather any number of linked values together into a set (or tuple).

In this example, we will use three pairs as compounds: “8:00” &
“8:10,” “9:00” & 9:01,” and “15:00” & “16:45.” After extending
the AETG model shown above with these compounds, the test spec-
ification looks like this:

1 field Access;
2 field Billing;
3 field Call_Type;
4 field Result;
5
6 compound Times { # NEW
7 label Start_Time Stop_Time # NEW
8 eight "8:00" "8:10" # NEW
9 nine "9:00" "9:01" # NEW

10 three "15:00" "16:45" } # NEW
11
12 Bill rel 2 {
13 Access : "Loop1" "ISDN" "PBX" "Radio"! ;
14 Billing : "Caller" "Collect" 800 "Free"! ;
15 Call_Type : "Local" "Long Distance" "International" ;
16 Result : "Success" "Busy" "Blocked" ;
17 # NEW
18 Times : "eight" "nine" "three"; # NEW
19 # NEW
20 seed {
21 Access Billing Call_Type Result
22 "ISDN" "Collect" "Long Distance" "Blocked" } }

This model still has some problems, namely that as of this writing,
an international call can’t be a collect call nor a toll-free call. This
model deficiency is rectified below by incorporating constraints.

3.5 Field-value constraints
This example extends the telephone-billing example to recognize
that international calls have special requirements. Specifically, in-
ternational calls are never billed as a toll-free (i.e., 800) call nor as
a collect call. In the model, the parameter “Billing” cannot have
the values “Collect” or “800” in a tuple where the parameter “Call
Type” has the value “International.” The model must reflect these
constraints among field values so the generator never chooses a test
case with the impossible pairs of values.

3.5.1 Using if-then statements to model constraints
The AETG system allows these constraints to be entered as “if-
then” statements: if “Billing” is “Collect” or “800” then “Call Type”
cannot be “International.” Stated differently, the test generator must
avoid the value pair (Billing is “Collect”, Call Type is “Interna-
tional”) and the pair (Billing is “800”, Call Type is “International”).
Here is the model:

1 field Access;
2 field Billing;
3 field Call_Type;
4 field Result;
5
6 compound Times {
7 label Start_Time Stop_Time
8 eight "8:00" "8:10"
9 nine "9:00" "9:01"

10 three "15:00" "16:45"
11 }
12
13 Bill rel 2 {
14 Access : "Loop1" "ISDN" "PBX" "Radio"! ;
15 Billing : "Caller" "Collect" 800 "Free"! ;
16 Call_Type : "Local" "Long Distance" "International" ;
17 Result : "Success" "Busy" "Blocked" ;
18
19 Times : "eight" "nine" "three";
20
21 if Call_Type = "International" # NEW
22 then Billing != "Collect" 800; # NEW
23 # NEW
24 seed {
25 Access Billing Call_Type Result
26 "ISDN" "Collect" "Long Distance" "Blocked" } }

Invalid tests are generated by AETG along with valid tests. In addi-
tion to simple invalid-value tests that were described in the previous
section, because constraints are available, a set of invalid-constraint
tests are also generated. These are tuples with valid values chosen
to violate constraints of the relation.

3.5.2 Using multiple relations to model constraints
An alternate way to reflect the requirements on international calls is
to model the requirements in two parts: one part for local and long-
distance calls, and one part for international calls. We can do this
by using two relations. The first relation models the requirements
for national calls; the second relation models the requirements for
international calls. The relations have the same fields, but use dif-
ferent values. This example is primarily here to introduce the idea

of building a model using multiple tables (relations). The AETG
system generates tests for each relation separately, then combine
the tests in the final output.

While this formulation of the model honors the requirements for in-
ternational calls, and prevents certain combinations of values from
occurring together, it generates more cases since some combina-
tions are tested twice. The generator covers combinations of “Ac-
cess” and “Result” in both relations, resulting in more test cases as
compared to the model that used a single relation with appropri-
ate constraints. Finally, it sacrifices the ability to generate invalid-
constraint tests. Here is the model:

1 field Call_Type;
2 field Billing;
3 field Access;
4 field Result;
5 field Start_Time;
6 field Stop_Time;
7
8 compound Times {
9 label Start_Time Stop_Time

10 eight "8:00" "8:10"
11 nine "9:00" "9:01"
12 three "15:00" "16:45"
13 }
14
15 Bill_national rel 2 { # CHANGED
16 Access : "Loop1" "ISDN" "PBX" "Radio"! ;
17 Billing : "Caller" "Collect" 800 "Free"! ;
18 Call_Type : "Local" "Long Distance" ; # CHANGED
19 Result : "Success" "Busy" "Blocked" ;
20 Times : "eight" "nine" "three" ;
21 seed {
22 Access Billing Call_Type Result
23 "ISDN" "Collect" "Long Distance" "Blocked" } }
24
25 Bill_international rel 2 { # NEW
26 Access : "Loop" "ISDN" "PBX" "Radio\"!;# NEW
27 Billing : "Caller" ; # NEW
28 Call_Type : "International" ; # NEW
29 Result : "Success" "Busy" "Blocked" ; # NEW
30 Times : "eight" "nine" "three" ; } # NEW

3.6 Factoring out commonality with auxiliary
aggregates

The two-relation version shown above has three fields that appear
in both relations with identical values. This commonality can be
factored out by use of an AETG modeling construct called anaux-
iliary aggregate. This is just a way of capturing some fields and
values for use in relations (relation aggregates). The model below
shows an auxiliary aggregate:

1 # Fields
2
3 field Call_Type;
4 field Billing;
5 field Access;
6 field Result;
7 field Start_Time;
8 field Stop_Time;
9

10 # Compounds
11
12 compound Times {
13 label Start_Time Stop_Time
14 eight "8:00" "8:10"
15 nine "9:00" "9:01"
16 three "15:00" "16:45" }
17
18 # Auxilliary aggregate # NEW
19 # NEW
20 Bill_common { # NEW
21 Access : "Loop1" "ISDN" "PBX" "Radio"! ; # NEW
22 Result : "Success" "Busy" "Blocked" ; # NEW
23 Times : "eight" "nine" "three" ; } # NEW
24
25 # Relations
26
27 Bill_international rel 2 { # CHANGED
28 Billing : "Caller" "Free"! ;
29 Call_Type : "International" ;
30 Bill_common include_aggregate_Bill_common ; }
31
32 Bill_national rel 2 { # CHANGED
33 Billing : "Caller" "Collect" 800 "Free"! ;
34 Call_Type : "Local" "Long Distance" ;
35 Bill_common include_aggregate_Bill_common ;
36 seed {
37 Billing Call_Type
38 "Collect" "Long Distance" } }

3.7 Multiple input sets
Some test scenarios have two or more sets of unrelated inputs that
must be presented together as test input. For example, in a calendar-
printing program, the choice of date range, etc. may be presented
together in a dialog with the printer to be used. A set of inputs must
have values for the date and printer choices. To achieve thorough
testing we should try pairwise combinations of values in the date-
choice area of the dialog, and pairwise combinations in the printer-
choice area. But it probably is not necessary to try every pairwise
combination of date and printer.

This can be modeled effectively with two relations. The first re-
lation has fields, values, constraints, etc. for the date choice; the
second relation has field, values, constraints, etc. for the printer
choice. Tests are generated and optimized separately for each rela-
tion. When it is time to merge the results, tuples are constructed as
described in the section on multiple relations above.

3.8 Field groups
While testing messaging systems we have frequently encountered
the requirement to support optional groups of values. This means
that if any one field from the group is present, then all fields from
the group must be present; however, the entire group is optional.
(Users of XML may recognize this scenario as an optional sequence
with mandatory members.)

We use constraints to model this requirement. Each field in the
message is modeled, including those in field groups. Fields that are
optional get a special null value. For each group, we include an
additional field in the model to switch the group on and off. This
so-called control field gets the values “present” and “null.” The
control field is not a system input; it is used to ensure that either all
fields in the group have null values or all fields in the group have
non-null values.

Here is simplified model to demonstrate:

1 field reg1;
2 field reg2;
3 field reg3;
4 field group1_control;
5 field group1_field1;
6 field group1_field2;
7 field group1_field3;
8
9 # Relations

10
11 r rel 2 {
12 reg1 : "r1" "r2" "r3" ;
13 reg2 : "r4" "r5" ;
14 reg3 : "r6" "r7" "r8" "r9" ;
15 group1_control : "PRESENT" "NULL" ;
16 group1_field1 : "value1" "value2" "value3" "NULL" ;
17 group1_field2 : "value4" "value5" "value6" "NULL" ;
18 group1_field3 : "value7" "value8" "value9" "NULL" ;
19 if group1_control = "NULL" then group1_field1 = "NULL";
20 if group1_control != "NULL" then group1_field1 != "NULL";
21 if group1_control = "NULL" then group1_field2 = "NULL";
22 if group1_control != "NULL" then group1_field2 != "NULL";
23 if group1_control = "NULL" then group1_field3 = "NULL";
24 if group1_control != "NULL" then group1_field3 != "NULL"; }

3.9 Large value sets and optional fields
This example presents a scenario in which the system requirements
allow many valid values in a modest set of fields. As discussed
above, combinatorial test generators yield a large set of tests when
fields have many possible values.

We use the example of a request for a quotation for a custom-built
PC system. After choosing the basic system configuration, a po-
tential customer can request zero, one, or many additional features
such as a graphics card, a sound card, an additional CD burner, etc.

Thorough testing should try every pairwise combination of feature
codes to make sure they work together. We present several models
to achieve this goal.

To use round numbers, we allow a quotation request to have 0, 1,
or up to 10 additional feature requests. Each feature request can be
modeled as a field; i.e., a system input. Each feature request field
can hold a single feature code; we model 30 different features (i.e.,
field values). We also model one additional value to mean that the
field is empty (i.e., has no feature code).

3.9.1 Simple model
The simplest combinatorial model for testing these requirements is
a table of 10 inputs with 31 values each, and no constraints. This
would allow field 1 to have a null code, fields 2–7 to have real
codes, field 8 to have a null code, and so on. This simple scenario
has 43,245 pairs, and well over a thousand test cases are required
to cover all the value pairs (AETG finds about 1,300).

3.9.2 Simple model with constraints
We extend the simple model with a set of constraints to bunch fea-
ture request codes into the first set of feature-request fields. This
prevents the first field from being empty when other fields are not
empty, an input that might well be rejected by the order-processing
system. The model must enforce the constraints that if fieldn is
empty, then fieldsn + 1, .., 10 should also be empty. We need the
following 9 constraints:

if field1 = "null" then field2 = "null";
if field2 = "null" then field3 = "null";
..
if field9 = "null" then field10 = "null";

This model yields even more cases than the previous model be-
cause the constraints make it more difficult to cover the value pairs
(AETG finds about 1,450). Still, the usage of empty fields con-
forms to convention.

3.9.3 Refactored model
In this example, the position of a feature-request code has no spe-
cial meaning. For example, a customer request for “DVD burner”
that appears in feature-code field 3 means exactly the same thing
as a request for “DVD burner” in field 7. So instead of allowing
any feature code to appear in any field as was done previously, the
codes can be split up evenly across the fields. Modeling the require-
ments this way reduces the number of test cases dramatically and
still achieves full pairwise coverage. The model still has 10 fields,
but each field has only four values. I.e., field 1 gets the first 3 codes
plus a “null” code, field 2 gets the next 3 codes plus a “null” code,
etc. We use the same constraints from the simple model. This
model has 1,179 possible pairs, and can be covered in about one
hundred test cases (AETG finds 106).

3.10 Arithmetic expressions
We present a model for testing simple arithmetic expressions that
was briefly discussed in [3]. This model was applied to an inter-
nal programming language to exercise computation and type con-
version/coercion of expressions passed as arguments to functions.
Tests generated from this model achieve pairwise coverage of com-
putations applied to constant values and values stored in variables.
The following model captures the four math operations addition,
subtraction, multiplication and division, and has constraints to pre-
vent overflow and division by zero.

1 field arg1type;
2 field arg1;
3 field operator;
4 field arg2type;
5 field arg2;
6 single rel 2 {
7
8 arg1type: "variable" "constant";
9 arg1: "minint" "minfloat" "maxint" "maxfloat" 9 9.0 0 -9 -9.0 ;

10 operator: "+" "-" "x" "/" ;
11 arg2type: "variable" "constant" ;
12 arg2: "minint" "minfloat" "maxint" "maxfloat" 9 9.0 0 -9 -9.0 ;
13
14 if operator = "/"
15 then arg2 != 0 ;
16 if operator = "x"
17 then arg1 != "minint" "minfloat" "maxint" "maxfloat" ;
18 if operator = "x"
19 then arg2 != "minint" "minfloat" "maxint" "maxfloat" ;
20 if arg1 = "maxint" "maxfloat" and operator = "+"
21 then arg2 != "maxint" "maxfloat" 9 9.0 ;
22 if arg1 = "maxint" "maxfloat" 9 9.0 and operator = "+"
23 then arg2 != "maxint" "maxfloat" ;
24 if arg1 = "minint" "minfloat" and operator = "-"
25 then arg2 != "maxint" "maxfloat" 9 9.0 ;
26 if arg1 = "maxint" "maxfloat" 9 9.0 and operator = "-"
27 then arg2 != "minint" "minfloat" -9 -9.0 ; }

4. RELATED WORK
Dalal and Mallows discuss the principles of applying statistical de-
signs to software testing [4]. Dunietz et al. discuss the relative ef-
ficacy of two-way, three-way, and higher coverage criteria to attain
different levels of code coverage [5]. The IBM Corporation offers
a library that can be used for generating combinatorials test, but
does not include a modeling language such as the one presented
here [6]. Bryce et al. analyze greedy methods for finding minimal-
sized combinatorial test sets [1].

5. CONCLUSION
The combinatorial approach to software testing holds considerable
promise for revealing failures by covering field-value combinations
that hand-crafted test suites miss. We hope this discussion and es-
pecially the examples serve to deepen understanding of this ap-
proach and make it easier for testers to apply combinatorial testing.

6. REFERENCES
[1] Reńee C. Bryce, Charles Colbourn, and Myra Cohen. A

framework of greedy methods for constructing interaction test
suites. InProceedings of the 2005 International Conference
on Software Engineering. ACM Press, May 2005.

[2] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman,
and Gardner C. Patton. The AETG system: An approach to
testing based on combinatorial design.IEEE Transactions on
Software Engineering, 23(7):437–444, July 1997.

[3] S. Dalal, A. Jain, C. Lott, G. Patton, N. Karunanith, J. M.
Leaton, and B. M. Horowitz. Model-based testing in practice.
In Proceedings of the21st International Conference on
Software Engineering, pages 285–294. ACM Press, May
1999.

[4] Siddhartha R. Dalal and Colin L. Mallows. Factor-covering
designs for testing software.Technometrics, 40(3):234–243,
August 1998.

[5] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to software
testing. InProceedings of the Nineteenth International
Conference on Software Engineering, pages 205–215. ACM
Press, May 1997.

[6] IBM. Combinatorial Test Services.
http://www.alphaworks.ibm.com/tech/cts, 2004.

